
 
Figure 1: “Height” as measured at the 

withers 

A Mathematical Model of 
Skeletal Development 
(as exemplified in equine 

height increases)* 
 

Interest in the development of horses resulted in the accumulation of a large amount of growth 
data on various measures at various stages of development.  Not all of these exhibited an invariance 
that was a useful predictor of characteristics that would be realized in the mature individual.  
Height at the withers does, however, show such invariance, and the equations that describe its 
development suggest a model of development of the associated bone structures. 

 
I. Introduction 

 
From direct measurements of the horses foaled on 

our farm over a period of many years it became evident 
that height increases associated with the development of 
the column of bones in the forelimb of the horses (as 
shown in figure 1) follow an invariant pattern under 
normal conditions.  This invariant pattern is accurately 
represented by two mathematical equations applicable to 
two distinct phases of development.  The first is a linear 
growth phase persisting for a couple of months after 
birth.  The equation for height growth during this phase 
is: 

 
1) h(t) = 0.089 hB t 

 
where h(t) represents height in inches as a function of 
time, t, measured in standard months (30.5 days) since 
conception, and the parameter hB is the height at foaling. 

The second and final phase of skeletal development 
is characterized by a monotonically decreasing growth 
rate from about 3 months of age until maturity.  Precise 
agreement with the growth data is obtained using the 
exponential distribution function: 

 
2) h(t) = hM ( 1 – e – 0.1086 t ) 

 
In this equation h(t) and t are as defined above and hM is 
the height at maturity; e is the base of the natural 
logarithm (approximately 2.7183).  

 
*  This article was published in Gift of Fire, Issue 32, pp. 8-17 (August 1988). A version had been published earlier as, "Growth 

Patterns in Thoroughbreds,” The Washington Horse, 1576-1582 (December 1976). 

 
 

Figure III.3: Generalized model of thermal emission/absorption 
applicable beyond idealization of a blackbody radiator 



 

The constants in both equations are determined to obtain a best fit to the actual growth data. 
The two equations are plotted in figure 2.  The plus symbols represent actual height growth data 
for an individual that was 40.5 inches in height at foaling and matured to a height of 16 hands (64 
inches). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2:   Equine Height Growth Pattern 
 

The fact that these two empirical equations so accurately describe the associated growth data 
beginning at foaling and persisting through the first months in the first case, and from that point 
through maturity in the other, and yet both converge at zero height at 344 days prior to foaling 
(coinciding with the most typical duration of pregnancy), suggests that the equations are in some 
sense essential to the description, and derivative from the actual processes involved in equine 
skeletal development! 

To check whether this were indeed a possibility, “heights” were estimated for eleven fetuses 
aborted between 2 and 11 months after conception.  This data corroborates nearly linear increases 
in this “height” parameter characterizing prenatal developments as shown in figure 3. 

The simplicity and regularity of these height growth patterns suggest the possibility of 
discovering a correspondingly straight-forward model of the underlying growth mechanisms.  
Models of physical processes often provide the capability of predicting phenomena that, although 
not previously noticed, can thereafter be observed and studied.  If certain patterns are to be avoided 
or encouraged, such models provide strategic tools for developing methods which avoid or 
encourage their occurrence.  In addition, a skeletal growth model would have considerable didactic 
value in promoting an understanding of the associated growth mechanism. 



 
Figure 3:  Prenatal development of “height” structures 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A general model of skeletal development is constructed in this paper from which equations 1 

and 2 can be derived.  Three unique types of anomalous growth phenomena are predicted by this 
model for which examples have been observed. 

The model is extensible to skeletal developments of human beings and other species.  The 
model suggests that both the long term evolutionary and individual developments are determined 
as an intricate balance between genetic and environmental factors.  Man’s future in space and on 
other planets may drastically affect his physical stature.  In particular, the model suggests an 
explanation for why a mature astronaut subjected to prolonged weightlessness in space might 
suddenly grow an additional half inch in height as has repeatedly been documented although the 
rationale that has been disseminated suggests a predisposition to accept other factors.  The soviet 
astronaut Yuri Romanenkol was the first reported incidence of this phenomenon. 

 
II. A Model of Structural Growth of Bone Tissue 
 

Functionality 
 

All of the bones in the column of the forelimb of the horse undergo continual stress as levers 
in the manipulation of heavy weight.  Such stresses are basically different than those encountered 
by bones used as shielding (the skull), or to absorb lineal shock (vertebrae).  One might therefore 
expect a commensurably simpler growth pattern for their combined lineal dimension than for 
composite structures comprised of bones subjected to unique stresses.  Contrast height growth in 
horses to that of human beings for which all of the diverse functions mentioned above are involved, 
and for which stress levels change dramatically throughout the first several years of development.  
It is probably three years before a person’s legs begin to experience stresses similar to those of 



adolescence and adulthood.  It should therefore not be surprising that human height growth curves 
differ markedly from the corresponding equine curves. 

The shoulder, arm, and smaller bones in the pastern of the horse, being normally at angles to 
the vertical, the constancy of the angles and the relative lengths of these individual bones with age 
is required in order that they contribute a continually proportionate amount of the overall height 
of the structure.  Since this condition is met to a large degree, the rate of increase of equine height 
can be seen to be proportional to the rate of increase in the lengths of the individual bones in the 
forelimb.  It is evident that in horses, height provides a measure of length of bone tissue continually 
being stressed as levers.  These two measures are therefore treated interchangeably throughout the 
remainder of this paper.  The model will address bone growth and function; measurement will 
involve equine height. 

 
Biological Processes 

 
The ability to convert environmental nutrition to support the reproduction and development of 

an organism according to type is fundamental in living systems.  So also is the ability to maintain 
the developing organism against the routine and extraordinary hazards of its environment. 

These basic requirements of living systems are allocated unilaterally to constituent cells rather 
than being a specialized capability of some.  Each and every cell of every organ and organism is 
so endowed.  Growth measurements of living tissue are therefore measures of multiplication rates 
of the cells and the efficiency of allocation of the new cells within emergent structures.  The 
individual factors in this paradigm of structural growth are elaborated in the following sections: 

 
Mitotic Factor 

To obtain a mathematical model of growth of bone structure, we will define “c” as the 
maximum achievable rate of conversion of environmental nutrition in the process of cellular 
production.  The parameter is seen to be proportional to the inherent rate of mitosis associated with 
individual cells in the system.  It is not a function of the collective system such as how many cells 
comprise it or how long it is.  It is rather a function of the abundance of nourishment in the 
environment and the conversion efficiency of its individual cells.  To simplify our model initially, 
it is assumed that there is a plethora of environmental nourishment such that c is limited solely by 
inherent metabolic efficiency.  Since each cell reproduces in kind, we can assume that the cells in 
each generation are characterized by the same conversion efficiency.  Thus c will be a constant for 
a given individual, independent of time. 

 
Developmental Factor 

As cells are produced, they are allocated within emergent structure in an orderly fashion so as 
to maintain the genetically determined structural organization.  The parameter “g” is defined as 
the proportion of this allocation process along the direction of measured growth.  It can be viewed 
as the proportion of the produced cells to be used in creating new structure beyond its previous 
extent and coincident with the direction of interest.  This chosen direction in our current 
investigation is along the length of the growing bones.  This direction happens to agree with the 
primary thrust of the allocation process for bones, which at least in post-natal developments, 
involves emanation at the epiphyses with continuous ossification into the structure of the bone.  
Therefore g is the production function for height; it is proportional to the rate of lineal increase in 
the length of the bone: 



 
3) g = a dh(t)/dt 

 
where a is an effectiveness coefficient whose value is to be determined, and dh(t)/dt is the time 
derivative of height (how rapidly it increases with time). 

In early embryonic stages of development this characterization is much less accurate, and in 
fact a much larger percentage of bone development is applied to the development of bone 
thickness.  In our model we will denominate such developments associated with new structure that 
is not in the direction affecting what we measure as “height” with the symbol “f”.  “Height” 
increases will not exhibit a direct dependence on any such factors, but they will diminish the 
effectiveness of c with regard to our parameter of interest. 

 
Environmental Damage Factor 

A certain proportion of the new cells must be allocated to repairing damaged structure if the 
organism is to survive.  To maintain viable structural functionality this repair rate “r” must be 
greater than or equal to the rate of destruction of cells experienced by the structure, in this case of 
the bones in the foreleg of the horse.  The environment for these bones involves continual stress 
associated with use as levers, for which mechanical forces which tend to break them (in destroying 
the individual cells in the bone) are proportional to their lengths (height in measurements).  Of 
course the rate of the destruction is also dependent on the frequency and specific amount of the 
force with which the lever is used, but to simplify the model we assume that the accumulated 
effects of mechanical stress over time intervals significant to cellular production remain 
approximately constant within each phase of development.  The amount of cellular production 
required to effect repairs can therefore be expressed as follows: 

 
4) r = b h(t) 

 
where b is the coefficient relating stress to damage rate, i. e., the value of b determined by the 
stress level and the inherent structural integrity of the allocated cells.  (It would take on a different 
value on the moon than on earth.)  Its value is to be determined. 

 
Illustration of the modeled Process 

To understand the development of cellular structure from individual cell divisions as it has 
been modeled above, refer to figure 4.  The figure illustrates the contribution of the cells in their 
various stages of mitosis to the overall structure.  The sketch is of a microscopic view of a thin 
slice of tissue, with chromosomes and membranes of the individual cells emphasized.  Parameter 
c is proportional to the number of cells which subdivide in an interval of time.  The directionality 
of the subdivision process within the structure together with its orientation relative to the direction 
being measured will determine the value of a.  The factor b will be proportional to the number of 
cells destroyed in an interval of time. 

 
Basic Equations of the Model 

Since mitotic conversion and environmental nutrition supports both the genetically determined 
direction of growth and the maintenance aspect of structural development, the fundamental 
equation of the model can be written as: 

 



 
 

Figure 4:  Illustration of structure comprised of cells 
 
5) c = f + g + r 
 
By substitution of equation 3 and 4 into equation 5, we obtain a fundamental differential equation 
for h(t) as follows: 

 
6) dh(t)/dt + b h(t) = A, where B = b / a and A = ( c - f ) / a . 
 
Equation 5 applies to all cellular structural developments in organisms and organs.  Equation 6 is 
restricted to skeletal developments, and specifically skeletal components (bones) subjected 
unilaterally to continual stresses as levers.  It will be specific to equine height when specific values 
have been determined for A and B appropriate to horses by fitting the resultant curves to data like 
that shown in figures 2 and 3 above. 

Height at the rump of the horse follows the same pattern as height at the withers even though 
the bones have different relative lengths and corresponding angles to the vertical.  The similarity 
in growth pattern derives from the basic similarity of function.  Length from chest to buttocks on 
the other hand employs different functionality and is therefore characterized by its own unique 
growth pattern.  Hence a horse’s length-to-height ratio does not remain constant as he matures.  In 
addition to parametric differences between functional bone groups, separate phases of 
development may impose different stresses on the bones, which therefore induce unique values of 
B even for the same functional bone group. 

We now have a basis for understanding structural groupings of bones and phases of 
development based upon similarities of stresses for which parameter values may be assumed to be 
unilateral for all members of the group, and constant for the duration of the phase of development.  
These definitions of functional groups and development phase are intricately related to the 
mechanism of growth.  In human development there are more phases involved, for example:  
Prenatal, infancy, crawling, walking, and later the more rigorous athletic stresses.  Furthermore, 
height in humans is not comprised of bones in a single bone group as discussed earlier. 



In horses there are basically only two phases:  Prenatal and athletic stress.  In the first phase 
the environment is buoyant and therefore b (implying B) is approximately zero, but bone 
development is not strictly lineal as in postnatal developments, so that we might expect different 
values for the parameter, f (and therefore A) in the two phases.  Thus in the prenatal phase, we 
would expect bone development characterized by a unique value of A1 = ( c - f1) / a1 and B1=0.  
(Numeric subscripts refer to phase.)  The solution of equation 6 in this case is just equation 1 if we 
assign the value A1 = 0.089 hB. 

For the postnatal development phase we would expect a characterization of, A2 = ( c - f2) / a2 
and B2 = b / a2.  The solution to equation 6 in this case is the exponential distribution function 
given earlier as equation 2, if we make the assignments, B2 = 0.1086 and A2 = 0.1086 hM. 

 
III. Characteristics of the Skeletal Growth Model 

 
Thus it has been shown that the simple model of skeletal development accounts for normally 

observed equine skeletal height growth patterns.  In particular it provides a derivation for the 
mathematical equations which accurately represent the equine height growth data shown in figure 
2.  There are, however, certain aspects of the model that need further explanation.  These features 
may reveal extremely interesting facets of skeletal growth phenomena. 

 
Phase Transitions 

Equine skeletal growth as it has been modeled is characterized by two distinct phases of 
development:  pre- and post-natal.  And yet we see that the initial growth pattern continues until 
two or three months after foaling!  This may be explained as follows: 

When the foal is born and begins using its legs to walk and then almost immediately to run and 
hop around, the cells in these bones begin to be destroyed at a rate proportional to the foal’s height.  
But initially the legs are “brand new” with no damaged cells that defines the equilibrium for which 
the phase 2 equation applies.  So with no incumbent damage to be repaired, growth proceeds 
linearly as though nothing has happened.  Gradually more and more damage occurs and a little 
larger percentage of the cell production must go into repairing structure rather than just adding to 
existing structure.  It is not until several months after foaling that the requirements for repair mount 
up to the percentage that will define the new equilibrium condition described by equation 2.  
Consider a cross section of the bone similar to what is shown in figure 4:  Normally there will be 
a certain percentage of the cells in the cross section in need of repair to maintain the integrity of 
the structure.  For a given height and stress level this percentage would be constant, but at birth it 
is nearly zero and only gradually approaches the accumulated damage as it reaches the new growth 
profile appropriate to the equilibrium values for which the number of cells being damaged and 
repaired are equal.  The foal being born smaller than the postnatal profile results in a lower damage 
rate (while accumulated damage is still small) and height will not “overshoot” a safe height for the 
individual while the transition takes place smoothly over a longer period of time. 

 
Parameter Value Changes with Phase 

That B=0 in the early embryonic and fetal stages of development and is appreciable after the 
foal is born is fully accounted by the model since gravitational forces are all but totally nullified 
in the buoyant environment of the uterus.  B is a physical characteristic of the environment which 
changes dramatically between these two phases. 



On the other hand, the change which occurs in f (and therefore in A) is an organizational change 
which would seem to take place almost as if it were only coincidentally at the time of birth as far 
as the model is concerned.  It is not a deus ex machina of the model, however.  The coincidence 
of this phaseover is extremely essential to the viability and therefore of survival of the equine 
species and can therefore be considered as being a necessarily induced evolutionary factor – which 
is to say, “It happens because if it didn’t, there wouldn’t be any horses.” 

If A1 = A2, a horse’s height at birth could reach 1.9 times what could be supported as a mature 
height, which is to say that the protected environment of the uterus would support the development 
of a length of bone structure that mitosis could not maintain once it became employed as a lever.  
It would in fact necessitate early parturition to avoid the foal becoming larger than its dam at 
foaling.   Such individuals would break their legs immediately upon leaping to their feet shortly 
after birth, die on that account and never reproduce as selfish genes require.  But once the bones 
attain an appreciable damage percentage, the danger of lengthier bones disappears since only the 
cellular production in excess of that required for repairs seems to be applied to structure extensions.  
Evolutionary factors tend to favor larger individuals as indicated by the more or less continuous 
evolutionary height developments from eohippus to Secretariat, so the need for a large value of f 
is dramatically reduced. 

 
Time-Independence of the Fundamental Growth Equation 

The growth data represented by equation 1 and 2 indicate that height is a continuously 
increasing function of time and we therefore think of growth as a basically temporal phenomenon 
wherein growth rate is determined by age.  However, the characteristic differential equation can 
be rearranged with coefficient substitutions as follows: 

 
7) dh/dt = 0.1086 ( hM – h ) 

 
Here we see that the rate of change of height is not an explicit function of time at all.  And 

therefore height is not implicitly a function of time either!  That is to say that although height (and 
its rate of increase) changes with age, it is not because of age, and is therefore not determined by 
age!  According to the characteristic equation the rate changes only as a function of the current 
height and the genetically determined mature height. 

An interesting aspect of this is the prospect for under nourished individuals regaining an 
optimal growth profile subsequent to obtaining a proper diet.  Such anomalous growth behavior 
has been observed by the author and his wife with horses that were too small for their age when 
they came to our farm at various stages and subsequently experienced sustained growth spurts that 
put them on a profile that was appropriate to individuals who were as much as six months younger.  
So as long as there is no severe damage from deprivation, “predetermined” mature heights hM can 
be reached by slower growth profiles. 

 
IV. Summary and Conclusions 

 
On a regimen of sufficient nutrition horses exhibit an invariant height growth pattern.  This 

pattern is characterized by two distinct phases that can be represented by very basic mathematical 
formulas.  These two formulas share a common point of origin which corresponds to the point in 
time at which the individual was conceived.  This suggested to the author that there might be 
something very basic to the developmental process in the form of these equations.  A simple model 



of growth was constructed that took into account genetic, metabolic, functional, and environmental 
factors.  The model was shown to match the data precisely and to predict anomalous phenomena 
that have been observed. 

Several questions are left unanswered with regard to the mechanism of switching parameter 
values in the model between phases, and in particular between pre-and post-natal phases of 
development. 

Understanding skeletal growth phases and functional bone groupings introduced by the model 
clarifies differences and similarities in human and equine height development.  It seems to the 
author to account also for some portion of the growth spurts experienced by astronauts left in 
weightlessness for prolonged periods of time.   

The author has also wondered how such massive dinosaurs could have functioned – 
particularly such long skinny-necked species for which Galileo’s analyses of giants in which the 
weights of their bodies necessitate grossly different conformation in bone length to width ratios, 
etc.  Such analyses should apply to the appearance of the large dinosaurs relative to smaller ones 
and the reptiles all of which exhibit very similar form.  Since developing this model the author 
believes that the large dinosaurs were aquatic, habituating bodies of water with swampy fringes.  
But that is far afield. 
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