Broad Range of Programmable Fault Tolerance in Transition Machine Computer Architectures

R. Fred Vaughan
Principal Engineer

The Boeing Aerospace Company
Seattle, Washington

Abstract sk

oy My 3 conTroL

Transition Machine computer architectures have

been investigated by the Boeing Aerospace Company

over the last several years primarily as a means

of obtaining large amounts of throughput at low I i i

cost and secondarily as a means for reducing soft-

ware development costs for aerospace systems S¢y SC, $C3 ag;ﬁL

(1,2,3,4,5). The coupling of pluralities of iden-

tical components in Transition Machine architec- T T

tures has suggested fault tolerance as a readily F 3= t¥—=———

achievable goal. Recent research has confirmed T)l 11

this expectation by defining classes of redundant i

component organizations endowed with superior re- P Py P3 PROCESSING

liabilities. A broad range of source programmable

fault tolerance has been defined for these organ- T T T

izations, comprising a spectrum from simple fault == o H

detection up through triplicated processing AL 11 1

pipes, each with its own failure correction cap- diE

ability. The approach encompasses HOL commands to DMy DM, DMy | DATA

effect a user-specified degree of fault tolerance.

These programmed designations can be based upon
the criticality of the individual computations to

the overall avionics mission success. The auto- Figure 1: Typical Transition Machine Organization

mated translation of these sections of the source s

ee Figure 2.) This translation capability pro-
program into an executable task organization pro- $1des a basis ;or incorporating standardized pro-
ceeds according to one of several algorithms app- grammer-keyed permutations to the translation al-
ropriate to the specified degree of fault toler- gorithm. The output of the translator can then
ance.

' Cioa INED DATA” P0G
Introduction por? COMOLTION L1STS

Transition Machines are a class of computer arch-
1tectures implementing a sfituation/response com- S
putation structure. They embody separate system —
control elements designed to maintain and evaluate
the status of activating situations defined for
each response, these being performed by conven-
tional processors configured in the system.

Previous research has shown that system control
elements can be designed for very efficient oper-
ation. This feature supports extensive multipro-
cessin? even where very small tasks (the res-
ponses) are defined (2). (See Figure 1.) This in

« OEC!

itself suggests the possibility of exploiting the Lo —
dynamic reconfigurability of multiprocessors, but el inaairs
as recent studies have shown, even more fault tol- AND_OIAGNOSTICS
erance advantages accrue with this unique archi- " Funcrions
tecture. * Mo

’ ¢ WO cxmon conptrions sraoLIc
A software development support system has been de- e e
veloped which translates conventional higher ot coaitions) (it

order languare (HOL) programs into the situation/-
repsonse structure of the Transition Machine (6). Figure 2: Transition Machine Support Software

provide low level redundancy, eror detectfion, re-
covery correction and even the allocation of de-
dicated redundant processing pipes, each fede~
rating unique segments of the tightly coupled mul-
tiprocessor system as resources in an isolated
stream of computations. These features, although
implemented to a large extent as software on Tran-
sition Machines, provide fault coverage which is
more typical of hardware implementations, and at a
much lower cost in number of components.

Reliability Considerations

In general where n identical components are
coupled in such a way that all are active and
anyone of the components can accomplish any of the
designated functions, with n-k of the components
required to accomplish all functions, the reli-
abiity of the system is given by:

3 n-1

- =(n-1 -Aty 1

r (n, k, at) -'):bL"—lL oin W(l-e Aty
= 1!("'1)!

where » is the failure rate of each individual

component and t s the duration of operation.

It is assumed_fpat the reliability of a single

component is e

As a concrete example to illustrate reliability
differences, consider an avionic system comprised
of two critical functions, each requiring a pro-
cessor and data storage. In figure 3 a configur-
ation is defined which handles the two functions
separately, each with a designated backup pro-
cessor. In figure 4 the same functions are hand-

ke s
IP '
SO HL P2 1Pg,
] |
L-.rr--d 1-.11--."
")

Figure 3:

Figure 4: I}ghtly Coupled Counterpart Configura-
on

led by a configuration of processsors for which
any processor can satisfy either function.

If the functions each require a full processor
capability, then n-1 failures would fail the con-
figuration shown in figure 4. But, if each
function only required one half (or less) of the
capability of the configured processors, or if
acceptable degraded modes of operation could be
defined, then it would take n processor failures

Example Uncoupled Implementation of Two
Avionic Functions

to completely fail the system configured as shown
in figure 4, For comparison, n-1 failures would
always fail the configuration of figure 3.
Certain failure combinations would fail it with

n/2 component failures.

For the configuration shown Ep figure 3, the pro-

cessor relfability is R] = r” where r fs the re-
1iability of each of the two functional halves of

the system.

Plotted in figure 5 are reliability curves for the
two basic configurations with different numbers of
configured processors, n, and success criteria, k.

1.0

e(4,300)
0_’ B
0.8 4 r(3,22¢)
—_——
RE 2
' r (4,22¢)
e 0.‘-- 1
= r(2,12¢)
- 0.5+
>
3 sk r(3, 1)
&
0.3+
0.24
r(2,0a0) = (10202 /
0.14
0.0 et
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3
At
Figure 5: Reliability Curves for Example Config-

urations

Clearly with no redundancy and no degraded modes
defined, the two configurations have equivalent
reliabilities. Reliability enhancements are very
significant for the tightly coupled configuration
when four processors are configured however.

Furthermore, as the number of configured compon-
ents increases, so does the advantage of tight
coupling over functional dedication. This advant-
age becomes even more pronounced when one includes
the parallel access memories, interfaces and
system control elements featured in transition
machine architectures. Negative aspects of
tightly coupled configurations from a reliability
point of view are the added complexity of the in-
terconnections and the requirement to detach
failed but active components from the system.
These aspects are not treated in depth here, but

do not in any case nulif ise
envisioned. Where v O gl

ery 1 com-
ponents are configured Ko arge numbers of

wever, reduced coupling
can be effected without eliminating reliability
advantages as will be shown.

Configuration Variations

The Transition Machine's organization can be ad-
Justed to support variant versions of fault tol-
erant, reconfigurable systems. A basic configur-
ation was shown in fiaure 1 which suoports recon-
figuration around any single-point failure with
slightly degraded modes of operation. The fault
detection and component switching logic must be
implemented as a part of the resident system soft-

ware controlled by the system control element.
Specific methods will be discussed further on.

For many applications however the flexibility of
completely interconnected components is unneces-
sary. For example the front-end processor res-
ponsible for entry of signal data from various
sources, where cursory checking and simple pro-
tocol are all that is required on each, could be
implemented as shown in figure 6. The individual

DATA INTERFACE
b~ DATA INTERFACE
= DATA INTERFACE
[— DATA INTERFACE

L e A

4 ™ ™e L Lo]

I | | i
MEMORY ACCESS BUS
NOTE: ™ Transistion Machine

CENTRAL
_gp-| PROCESSOR

}1gure 6: {;ont~£nd Signal Processing Configura-
on

Transition Machine elements are organized as shown
in figure 7. In this example, processing loads
imposed by a single source could be distributed
somewhat but not over the entire system. Likewise
any single point failure could be circumvented
(whether a processor, a memory, an interface or a
System Controller), but this recovery would in-
volve a neighboring component rather than just any
similar component in the system as could be done
in a completely interconnected multiprocessor
system. The modularity and interconnection simp-
licity make this approach preferable for many app-
lications.

Another configuratign investigated for applica-
tion to airborne C” systems with possible app-
lication to avionics as well is shown in figure 8.
In this configuration, sensor signals are routed
redundantly. The signal processors are each as-
signed responsibility to back up a left-hand
neighbor while their right-hand neighbor is
assigned to back them up. Similarly all other
components and interfaces have a designated re-
covery support role and a designated backup.
These types of configurations are ideal when
growth in processing demands can be expected to
remain proportionate to increased interface re-
quirements, equipment for which will also increase

SYSTEM
CONTROLLER
4 A
A b 1 = J
LN RN (U] M
RAM RAM RAN ("
PROCESSOR PROCESSOR
l 1 L 4 'Y
l d roes ¢ o o .
111 | [[1]
1 2 3 ‘
RAM RAM T RAN
DATA INTERFACE l MEMORY ACCESS BUS
FROM CENTRAL PROCESSOR
Figure 7: Individual Transition Machine Element
Organization
ANTENA/
RECEIVER L‘V' -
SIGNAL
—mxusm'j Spon
"
SYSTEM
—e P—1 conTrROLL -9 S.C.
R
p - ————
| [
DATA ! r4 -
PROCESSOR 0.P, 92
¥ n -
E INTERCOMMECTION | WETWORK #
[F
It e
u Fuzion/ s.C
DISPLAY F/0 02
PROCLS
"n
[I /0

s.C.

CONSOLE o ”
! 1 | SISPAY | (SACKUP)

Figure 8: Completely Interlaced Organization

in modular units. It is vulnerable however to cer-
tain combinations of failures.

The detection and switching logic can be hardware-
supported, but most of these functions can also be
performed in software. In this regard Transition
Machine archtectures provide significant inherent
advantage since process assignment is performed
independently by the system control elements and
can therefore be maintained even when processors
fail. The failures of these independent process
management mechanisms must be addressed, but this
is quite straight forward since processors select

a system control component to assign them a task
rather than being specifi te

gontrol element.g pecifically chosen by a system

n figure 1 a typical modular component str

was shown wherein the system co;::zl (provs:es:ct:::S
agement) functions were partitioned among mul-
tiple identical components. Failure of any one
(or even several) will not result in system fail-
ureé nor even would it necessarily degrade system
performance.' Switchover in case of system control
component failure does not present inordinate pro-
blems. The processor can impose a consistency
check of data transmitted from the system control
element as a part of the task assignment protocol.
Failure of the check will precipitate the pro-
cessor requesting task assignment from another
system control component. In turn system control
will time-out the task processing performed by the
processor and can implement task roll-back if the
processor fails to request exit processing within
the allocated time. Details of this implemen-
tation will be discussed further on as well.

Real-time Recovery Procedures

Configuring major components cannot in itself pro-
duce a fault tolerant system. There must be fault
detection and component switching mechanisms as
well. Clearly, any component in the layout of
figure 1 could fail without incapacitating the
system of any of its major functions; however, the
recovery procedures must be implemented which
accommodate uninterrupted - processing. These
mechanisms will be described for each of the major
functional categories: System control, task pro-
cessing and variable data or program control
storage. I/0 interfaces must also be
accommodated, but these are frequently
implemented with built-in test equipment and auto-
matic redundancy switchover mechanisms in avionic
systems, and are therefore not addressed here.

System Control Element Failures

The system control function is comprised of task
control data storage and task eligibility deter-
mination and activation logic. Methods of re-
dundant storage and switchover mechanisms for the
task control storage can be implemented just as it
would be for the variable common data storage mem-
ories. This is discussed further on. The logic
elements on the other hand can be verified with
each task assignment such that if consistency
checks fail on the task assignment interface, the
processor will not accept the assignment and will
request an assignment instead from another system
control element. Multiple faulty encounters with a
given system control element from different pro-
cessors will effectively result in switching the
element out of the system by mutual consent of the
processors.

Processor Failures

The function of the processors in a Transition
Machine is to perform expression evaluations and
variable assignments associated with task pro-
cessing. Failure of a processor in performing its
function can be detected in several ways depending

[e]

upon the type of failure, its precise phase of
occurence and the duration of the fault. Ap-
proaches to identifying/correcting failures in
the processors are discussed further on and dia-
grams provided for task organizations to be gen-
erated by the support software to effect these
approaches. The processor must also of course
implement the system control interface to assure
appropriate task assignment. Failure of a pro-
cessor to meet protocol requirements will not only
result in ignoring the effect of its processing,
but will also result in no more task assignments
to the processor if a consensus of system con-
trollers encounter problems with the processor.
Hard switching can then be effected.

Memory Failures

Memory failures can be detected by traditional
means using parity implemented for verification at
the interfaces, checksums, etc.

Programing to Handle Faults

The software development support system shown in
figure 2 features a translator which converts con-

tional HOL source code to a data flow structure
:Enthe executable task level. This translator

generates tasks at approximately the individual
statement level of the HOL, such that logical re-
lation determinations and variable assignments
are each incorporated into separate tasks called
evaluators and assignments respectively. During
execution these tasks will be triggered in an
order constrained only so as to preserve the data
flow characteristics of the program. (Since re-
ference 6 was published, additional algorithms
have been developed which support the translation
of recursive procedures, but which require run-
time support for dynamic allocation of variables,
etc.) This translation process results in separ-
able actions united by the data flow constraints
of the program to effect a result which is in-
dependent of the number of processing elements
incorporated into the system. Communication bet-
ween tasks is indirect through variables main-
tained in a common data base with neither the gen-
erator nor user task responsible for the transfer,
it being effected by a separate system control
element, whose control information is also gen-
erated by the translator and which activates
users only after their respective generators have
completed. Thus, by maintaining the status of the
data base, system control can effect the proper
data flow by activating tasks when their required
data conditions are met.

This normal translation implementation can be mod-
ified however to include other constaints over and
above those preserving the program's data flow.
For example, individual tasks can be contrained to
be repeatable in sequence (roll-back compatible),
doubly redundant, etc. Furthermore, in-line tran-
slation mode changes can be accommodated by indi-
cations in the source code which effect different
translation constraints at various points in the
source program to support programmer-specified
variations to the degree of fault tolerance to be

r

> employed in
from ensuing

Ch point in the source wil) st fn-

ss
tation. Key words are theesfo'iolo:::g!e
NORMAL

DETECT

RECOVER

DEDICATE

ROLLBACX

DETECT.
ftte e ;?:;r::;o:ﬁoration of failure detection
duidiolll L. > that run on Transition Machine
ek i s fairly straight-forward. Since the
ool :n:lator process implements tasking at
st cade Y the statement level of the HOL
o vo e, tasks need merely be duplicated with
unioy ariables allocated for assignment by the
plicate tasks. This allows verification of ex-
p;gssion evaluation prior to assignment to vari-
? es that are used in the expression being eva-
uated. The results of the redundant tasks are
coupareq. with a consensus required for
proceeding, failure indication resulting other-
wise. 'This is shown in fiqure 9. For failure

\ / Az=exp, A'imexp.
A:=expression) 3
l . A AT:A [4 oo
detected detected
ervor error
<

1

Figure 9: Detection of Any Single Failure

detection on evaluations, duplication is employed
with contingent tasks requiring truth or falsehood
from each of the redundant tasks and failure in-
dication resulting otherwise.

RECOVER. Failure detection/recovery is incopor-
ated into object tasks by the translator's trip-
lication of normally generated variable assign-
ment tasks, with voting comparison tasks being
?enerated in addition. Assigned variables are al-

ocated in triplicate with the resulting values
being compared as shown in figure 10. Agreement
among all three variables indicates a non-failure
situation. Failure of one or more comparisons will
result in isolation logic as shown in the diagram
with failure identification procedures ensuing.

unrecoverable
combination -+
of errors .

mamory '
error at -}
location A

|

i

Figure 10: Detfction/Recovery of Any Single
Failure

The detection/recovery approach for logical tasks

is to triplicate the evaluator tasks together with

the output combinations. Activation of follow-on

tasks will necessitate a concensus of output from

any two of these evaluators.

DEDICATE. Dedicated processing fpipes are im-
plemented by defining categories of system control
elements, processors and memories that can be em-
ployed on respective redundant tasks in each com-
putation. These processing definitions must be
declared in the source programs, €.9. PIPE1 = SOD3,
SC1, P2, Ml. (In the configuration shown in figure
1 , 81 unique processing pipes could be defined,
like the one which is declared above.) Value com-
parison schemes similar to those previously des-
cribed are implemented in this case also, but the
components performing the various assignments and
comparisons are rigidly controlled so that only
authorized tasks are assigned within the dedicated
pipes. Figure 11 illustrates the resulting or-
ganization among the various tasks.

ROLLBACK. To preclude computational errors due to

processor halt, or indefinite delay conditions,

variable assignment tasks may be generated as two

serially redundant units each of which performs
part of the task function and both of which are
repeatable. Then by implementing a timeout mech-
anism in the system control element, the tasks can
be re-initiated in another processor without
indeterminate results. (Notice that certain tasks
will not require duplication; the translator will
determine which require duplication as a part of
its normal data flow analysis.) This is illust-
rated in figure 12. The approach is also valid
when implemented in combination with the
approaches described in the preceeding
paragraphs.

< :/ /:-o.

enrecoveradie
cosetsatiea T
of erveny
Acwd'
- e ASredl Aty
3 AR A%-A ACA ~-
lecation A . s Ty -
Py T r P]
. g gt o 2 :
g - = — |
: 2) i (» i (= i
S i e R AR
Figure 11:

Det tio?{kecovery of Any Sin?ie

Failure (Triplicated Channels

Figure 12: Protection Against processor Halt
Condition

Conclusions

The conclusions of the research that has been con-
ducted to date indicate that Transition Machine
computer architectures form an ideal basis for
fault tolerant avionic computing systems. The ad-
vantages stem from the configurability of com-
ponents in these architectures, the peculiarities
of the system control functions, and the support
software's abilities to adapt to task structures
according to source progmable constraints.
These advantages can be exploited at execution
time because of the task control efficiency pro=
vided in Transition Machine architectures. To-
gether these capabilities provide a programabie
degree of fault tolerance accomodate un-
interrupted real-time avionics processing.

(1)

(2)

()

(4)

(5)

(6)

References
Anastas, N.S. and Vaughan R.F., sparallel
Transition Machines. Proc 1979

International Conf. on Parallel Processing.
g 1979

Vaughan, R.F. and Anastas, M. S,
cessor Based Transition Machines.”
COMPCON_FALL 1979, Sept 1979

‘nicrOpro;

Vaughan, R.F. and Anastas, M S wLimiting

Multiprocessor performance An‘n.ysis‘. ProcC.
1979 Int. Conf. ON parallel Proce si lﬁo

Vaughan, R.F. and Anastas, M.S. “An Analysis
or Throughput performance in

of Multiprocess

the Limit." Journal of Digita\ Sﬁtg;.
vol. &, No. 2, Summer . PP - 3
Anastas, M.S. and Vau nan R.F.y “A Prototype
parallel Computer Arc jtecture for advance
Avionics Applications.‘ proc. of NAECON '8
May 1982

Vaughan, R.F. and Anastas, M.S. wSoftware
Development pport System for Advanced
Avionics App\ications lncorporating a
parallel Machine Architecture.“ oc. of
NAECON ‘'82. May 982

