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An Analysis of Multiprocessor
Throughput Performance in the
Limitt

RUSSELL F. VAUGHAN and MARK S. ANASTAS*

Abstract—This paper describes an analysis of the major sources of overbead in multiprocessor
systems with emphasis on performance equations for very large systems. An analytical model
was developed for studying the relative contributions of these sources of overhead. Memory con-
tention overhead as modeled Is contalnable within bounds; the limit equations are provided.
Software control table lockout, on the other hand, Is shown to Increase unbounded In large
systems in such a way as to limit performance. Methods of effectively reducing overhead from
this source are explored. This paper shows that task control efficiency Is the only means of
achieving efficiency In very large multiprocessor systems. In addition, If such efficiency could be
obtained In a centralized control mechanism (by hardware or other means), there would be no
other immediate theoretical problems assoclated with Increasing multiprocessor size.

1. INTRODUCTION

Single processor approaches have known limitations to increasing general
purpose computer throughput capabilities [10]; moreover, requirements for
increased throughput seem more general and insatiable than ever. The ad-
vent of inexpensive microprocessors has intensified interest in an effective
multiprocessing technology capable of combining many processors to obtain
significant throughput. The cost advantages of multi-microprocessors over
high speed main frame processors provide a natural motivation for re-evalu-
ating the problems previously encountered in large MIMD multiprocessing
systems. Therefore, the central theme of this paper is the limiting perfor-
mance behavior where many processors are involved.

The theoretical problems associated with deadlock avoidance and synchro-
nizing concurrent processes are well understood [4, 11, 14). The practical
problems. however, which are encountered when implementing large multi-
Processing systems, have seemed unavoidable. To address these practical
issues, this paper presents a general parameterized model of the major over-
head contributions in multiprocessing systems. Descriptions of the individual
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overhead contributions modeled separately are found in the literature, but
not the integrated mathematical models presented here. Nor has the' em-
phasis of. thfse other models been on performance expectations in the limit as
system size increases. The model described here relates the three major con-
tributions to mu_ltiprocessing systems overhead to the desired application
program processing requirements in order to assess potential performance
capabilities. A diagramatic illustration of the modeled sources of overhead is
provided in Fig. 1. These sources are as follows:

1. System Control: the multiprocessor executive control program execu-
tion time requirements

2. Control Table Lockout: Common queues are required to provide coor-
dinated control; this implies critical sections in the control program which
access these queues.

3. Memory Contention: Common physical memory for multiple proces-
sors requires the possibility of multiple processors converging on the same
physical memory module, in which case a processor may have to wait until
other processors’ access requests have been serviced.

To obtain a comprehensive model of multiprocessing overhead, without in-
appropriate complexity, a hierarchical model was developed. The levels and
states in this hierarchy are obvious. Fig. 2 is a diagram of the time expen-
diture states at the top level of this multiprocessor system model. These states
are: P, the normal processor operations associated with instruction sequenc-
ing and performing the instructions in its repertoire, and C, the memory
delays which may include sequences awaiting memory contention resolution.
In order for this model to be valid, both the spatial and temporal distribu-
tions of memory access requests must be constant and independent of the
changing occupations of the processor. These assumptions are characteristic
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N = number of processors
M = number of MemOries

Fig. 1.

Modeled sources of overhead




VAUGHAN and ANASTAS: MULTIPROCESSOR THROUGHPUT PERFORMANCE 155

Legend
P = processor operation
C = memory access delay

Fig. 2. Time expenditure states

of current multiprocessing. (One of the design trade-offs considered below
investigates potential advantages resulting from changing the temporal

distribution.)
Time (throughput) overhead is the multiprocessing concern here. Other

aspects of multiprocessing, including memory and peripheral sizing, have
been modeled in [7). These other aspects are very important in a system and
should be optimized to obtain the best performance for any given configura-
tion. However, they are not the major obstacles to a viable multiprocessing

capability.

1. PROCESSOR TIME EXPENDITURE MODEL

The time utility characteristics of the various activities that can be assigned
to the processor are modeled here. In a multiprocessor system, the amount of
time expended for some of these activities may depend on the number of pro-
cessors, N. (This definition of N will be assumed throughout the rest of this
paper.) The P state of the processor shown in Fig. 2 can be modeled in more
detail as shown in the diagram of substates in Fig. 3. The four substates in

this diagram are the following:

1. idle state, awaiting an eligible application program task,
2. application program task execution,

3. control program execution, and

4. control table lockout.

edictions independent of the software con-
e idle state will be null. Here the emphasis
ble to insufficient jobs to go
Il be discussed below. In addi-
y as a part of the control pro-

In order to get performance pr
figuration, it was assumed that th
is on performance degradation not attributa
around. However, utilization considerations wi
tion, lockout is assumed to be experienced onl
gram execution and is therefore called control table lockout. Critical sections
in the application program are assumed to be resolved by task eligipility con-
siderations handled by the control program. To resolve such conflicts in the
application programs is not the direction of high performance multiprocess-
ing, since excluding the parallel execution of such programs Improves
throughput. The time line in Fig. 4 shows the phasing among the remaining

'
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task execution

control (program) execution
lockout
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null transistions

Fig. 3. Second level: time expenditure substates within the processor
time expenditure state P

ENTRY EXECUTION EXIT

A A A

A = application program exscution time
'S - 0, + 02 = multiprocessing executive overhead

L= L‘l + L, = lockout overhead for accessing control information common to multiple processors

Fig. 4. Task timeline basis for processor overhead

three states. Each of the three remaining processor time expenditures is
modeled very simply. An equilibrium situation is assumed among the states,
so that the numbers of processors entering and leaving each state are approx-
imately equal. The level of sophistication could obviously be increased in
these models, but performance predictions are relatively insensitive to such
improvements. The simpler models are easier to describe and understand
and fit existing multiprocessor performance data adequately.

2.1 Application Program Task Execution

The model of application task execution involves a constant execution time
requirement, A, for all tasks with given queue/dispatch/exit coptrol pro-
gram request overhead. The model is still valid for programs making multi-
Ple requests as long as the ratio of application to control program execution
times, p = A/9, is a constant. This ratio is used extensively later on in the
analytical derivation of performance and is called the individual proces.»sor.ef-
ficiency. It is affected only by the control program overhead per application
task ‘"d is defined so as to exclude the effects of lockout i"‘!?"ffdj’)j multiple

processors,
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More recent a!lalysis l'fas .Shov.vn that the model is still valid even when p is
.ven by an arbitrary distribution function, as long as the system can be
gssumed in equilibrium [19].

2.2 Control Program Execution

The execution time of the control program is assumed to be broken intoJ
artitions. These partitions are assumed to be mutually exclusive critical sec-
tions with equal execution frequency as well as execution time, ;.

J
o= L o=,

For each task, the control program execution time is assumed to be pro-
portional to task execution time, where p is the constant of proportionality.
This restriction is lifted in [19], however. In addition, this task control over-
head is assumed to be independent of the number of processors in the
system. The latter assumption implies that queues are implemented with
multiple pointers such that lengthy queues do not result in commensurable
amounts of searching to process linked task lists. This seems to be a uni-
lateral approach to sophisticated control programs appropriate to multipro-

cessing.

2.3 Control Table Lockout

Coordination of the activities of many processors to achieve a single com-
putational objective requires the control program to have common task
queues for exploiting the parallel aspects of individual application programs.
Control table Jockout occurs at entry to each of the J control program parti-
tions, each of which is comprised of a mutually exclusive critical section. The
total amount of lost time due to this control table lockout will be

J
L= EL,-

Jj=1
e attributed to the jth critical section.
m which a value can be computed for

the overhead L, we will define N; as the number of processors waiting and/or

executing the jth critical section in the control program. From t.his defm'mon
it can be seen that the amount of lockout time 2 processor will experience
=NpO = N,(0/]). N, can be

before entering the jth critical section will be L;
determined as the probability P, of an individu
‘t_rll:e times the number of possible competing proccss?rs..
is determination is justified by mean value analysis an _
istri Qi d
distribution theorem in particular [9]). The probability P, can be determine

where L is the amount of lockout tim
In order to derive an expression fro

al proccssor' being in this jth
N — 1 in this case.
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as the proportion of time spent in the jth state to the total amount of time
spent by each processor.

P:= 51+Lj - 8 +NI)
7 A+8+L Jp+1+N)

Thus, since N; = P;(N — 1), a second order equation for N, is

_U+N)N-1
77 Jp+1+N)

The formal solution to this equation is

N==3 2

N-»p N-—-»p)?
L=290 + +po-
52+ T+
The expected number of locked out processors is plotted in Fig. S for
various values of p. These curves are in agreement with Madnick |16] in spite

of a very different derivation. The significance of increasing the effective
number of partitions in the control program will be discussed later.

N-1 p+1 N-1 p+1772 N-1
- 4 =
[21- 2 ]+ J

ForJ =1,

2.4 Combining Processor Time Expenditures

The objective of the processor activity modeling has been to obtain insight
into the relative amount of time spent by each processor inits A, 0, and L
states. That is, the total number of equivalent processors in the configuration
occupied by each activity is of interest. This assessment can be obtained by
establishing the ratios of time spent in each activity to the total of a pro-
cessor's time spent in all activities. By defining X4. Xe, and X as the respec-
tive ratios for the A, @, and L activity states,

A 0 L
- =1

Furthermore, the equivalent nu mber of processors involved in each activity

in an equilibrium situation N, Ny. and Ny can be determined as

Ny = X-N. Ng= Xo-N. N = XN
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In order to establish these relative contributions, the results obtained pre

viously can be substituted. Mthc fgg__—_l_j%n d
eforJ = ed as

Ump+1+Lp=Nto» N=">p7
2 L 2 ]+9

and

Nyo=p-N.U™!
No =N-U!
N=WU=p—-1)N-U"!

III. MEMORY CONTENTION DELAY MODEL

Various memory/processor interconnection schemes can be employed for
access arbitration, including multiport controllers and crossbar switches as
described by Enslow [12] which realize the logical interconnecting paths
shown in Fig. 1. Specific configuration dependencies such as processor clock
phasing, memory address interleaving, processor to memory speed ratios,
and processor memory request duty cycle are discussed in [18]. The mathe-
matical modeling of the performance to be expected of configurations incor-
porating such dependencies is addressed here.

In a general multiprocessor configuration with M memories and N pro-
cessors, the percentage of time that the processors spend waiting for a
memory to service their requests is important [3, 13].

3.1 General Model of Synchronous Interleaved Memory

To simplify the model, the likelihood of a processor acccssing any of Fhe
memories on a given request is assumed to be equal. Address interleaving
makes this assumption realistic. In addition, each processor pres.uma.bly
makes a synchronous memory access each cycle; thisis a wor§t case situation
tending to make the resulting performance predictions pessimistic.

With the probability, Ps(i), of exactly i processors converging on single
memories anywhere in the system on a given access,

(Nij

Psti)= L p,i.j).

J=1

where | x| is the largest integer less than or cqu.al to x, and ps(i. j)i :‘s t::
probability that there are j instances of exactly .l'prOCCSSOI’S c'(l)'n'v"g (ig )
single memories in the system. Consider the conditional probabilities pyli. JJ,
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and pmi. j) which are respectively the probabilities of a processor and a
memo ing involyed in am i-way convergence of processors on memories
instances of such convergence in the system. Under the

:ven that there are J
assumptions made about random accessing and equivalence between pro-

cessors,
poli j) =i j/N), since i X j of the N processors are involved, and
pmlis J) = (j/M), since j of the M memories are involved.
Now the unconditional probabilities of processors and memories being in- ;
yolved in i-way convergence situations can be determined as '
._“g"i " .._il"}'f"i o
PP(,) o j=] Pp('o J)'p’(lo J) = N j=’ p,(l,J)-J
WL 44d W)
P.i)= L pmlij)-plij) =72 L psi.j)J
J=1 M j=1

Therefore,
o M e
Pyi) = :'EP..(:)

3.2 Modeling Memory Response Time

So far only the probabilities of processor/memory convergence have been
covered: the real interest lies in contention situations where processor time is
lost. Therefore, assume that there is some number, k (not necessarily unity,
but for convenience a positive integer), of processors whose requests can be
accommodated by each memory module without any of the contending pro-
cessors experiencing delays. k is defined as the ratio of processor request time
over memory response time. A new conditional probability, Pg(i) can be
defined which is the probability that a processor involved in an i-way conver-
gence situation will actually experience contention; Pg(i) = [ — k)/i]. for
¢ >."i Pi(i) = 0, otherwise. The probability, then, that a processor will ex-
perience memory contention due to i-way cOnvergency situations is

Pi) = Pgli)-Pyli)
Pdi)= (i — k) %P,,,(i), fori > k;

P{i) = 0, otherwise.
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The total probability of a processor experiencing memory contention Pc
can be computed as

N
L Pc,

+1

Pc=

since contention can only occur when i > k. Therefore,

N
Pc==— L P ()G—k)
i=k+1

Z|X

3.3 Approximating the Distribution Function

Obtaining a distribution function Pp,(i) is now required. Many such
models of processor queueing on individual memories have been advanced
[3, 8]. Little accuracy advantage accrues from selecting the more sophisti-
cated models involving Markov chains. This is particularly applicable for the
configurations discussed in this article where memory contention is small,
since configurations for which M 2 N and k = 1 are of primary interest.
Bhandarkar [6] has shown errors of less than 5 percent in all cases for the
model assumed here. -

The model selected is the binomial approximation of Strecker [17], which
was found to “work well in all cases” by Baskett and Smith [S], and with
more accuracy for M = N by Bhandarkar [6). This model is precisely valid
for the initial allocation of processors to memories under the assumptions
made previously.

According to this model, the probability that exactly 7 processors converge
on a given memory module in a given cycle is

P = ()@Y (- 30) e () = =

Therefore, according to this model,

Pe =N s AN = 0! M

N - i N=i
M T NI — k) _]_) (l _ _l__)

The form of P, as a function of the number of memory modules is shown
for N = 20 processors in Fig. 6. The impact of varying the relative speed k of
memory access and processor request logic is illustrated in the figure, apply-
Ing respectively for k = 1, 2, and 3.

All of the convergence and contention probabilities are functions of M. N.
and k, specifically P, = P, (M. N. k). The probability distribution functions
P, and P, are functions of M and N as well as i, €.g., Pn(i) = Pm (i. M. N).
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3.4 Limiting Behavior of “Square” Systems

Note that memory contention decreases very rapidly with M until the
pumbers of memories and processors are approximately equal (M = N), and
very slowly thereafter. Systems for which M = N are “square” multipro-
cessors, and P (M = N, k) = P.(M, M, k) = PN, N, k). To understand
the significance of configuring multiprocessors with approximately equal
numbers of memory modules and processors, consider the limiting values of
P/M., N, k) as M and N become large. The limits of the summation can be

changed to obtain

_M Mk .
Pe=7 LG —KPy) =5 (= k)P, ().
Then, since
i
_EOP,,,(.'. M.N)=1,
M N ) M Mk '
P. = N 'Eoz P,i) — k o Ni:;o(. k) P, (i).

To obtain a limit for P., M = N is substituted into P,(i. M, N) and

N
%= llv.imit (l - l) . Then, for “‘square” systems:

N
1 L k-1
LimitP.(M=Nk)=1—k + - —'-( : )
N=w ei=0 !

The limiting values for k = 1, 2, and 3 are shown in Table I.

3.5 Incorporating Access Duty Cycle

In real systems there is typically not exactly one memory access per pro-
cessor per request cycle, and the processors are not synchronized relative 10
Wwhether they actually access memory on a given cycle. There are two wypical
Processor architecture characteristics which affect duty cycle.

1. Processor operations do not typically require an access on every cycle of

the instruction. For example, statistically, somewhat less thun half of the Tl
microprocessor machine cycles require a memory 4ccess.

2. Some processors implement a cache memory scheme for louk-ahca‘d

Memory accessing to reduce the average wait time in the processor. This
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Fig. 6. Impact of ratio of processor request to memory response times
TABLE 1
Limiting Memory Contention Probabilities
Asymmetry Ratio Limiting Contention
Relative Speed (Numbers of Processors Probability (Limit
(Memory to Processor, k) to Memories, 1) PM N)M N — >
1 1 0.368
2 1 0.104
3 1 0.023
1 12 0.213
1 3 0.150

processor makes memory accesses

reduces the number of cycles for which the
ber of accesses outstanding when

but substantially increases the total num
they are made.

These combined phenomena establish an effective, though statistically

varying, memory access duty cycle. These characteristics of real systems can-
not be modeled by varying the memory o processor speed ratio k. However.
at least where Jarge numbers of processors 4re assumed. an approximatcly
constant access duty cycle d can be expected. This access duty cycle will alter

the apparent number of processors actually making memory accesses at any
fN=d-N'. Real

glﬂi_cﬂhl&yde to an equilibrium value for large systems 0 o
square" systems would then be characterized by the model as “rectangula.r
systems of dimensions N = n-M, where 7 is the apparent asymmetry ratio.




VAUGHAN and ANASTAS: MULTIPROCESSOR THROUGHPUT PERFORMANCE 165

3.6 Limiting Behavior of “ .mhr” Systems

Of interest are memory contention effects when system size is i )
congruent rectangular form. As was the case for “sqylsxtare" sys,les ::rf‘:sﬁlrgl:
“rectangular’’ systems the contention probabilities level off to approximately
constant values. Chang, Kuck, and Lawrie [10] derived an expression for the
limit from the memory’s viewpoint (the probability of a memory rather than a
processor being involved in a contention situation). The results do not incor-
porate the speed ratio k.

Limiting processor contention in large “rectangular” systems can be de-
rived by using the same approach as described previously for “‘square”

systems:

1 k IO =
Limit P, (N = ﬂ'M.k)=l—£-+l. k—i)ny!?
Ha n ei=0 !

Accuracy considerations relying on Bhandarkar's [6] data suggestn < 1 as
the primary domain of usefulness for this equation. The limits for k = 1 and
for asymmetry values n = 1, %2, and /3 are shown in Table 1. The asymptotic
approach to these limits is shown in Fig. 7.

3.7 Combining Processor and Memory Contention Overhead

In the previous accounting of processor time expenditures, only three cate-
gories corresponded to the three processor states of application program,
control program, and control table lockout. However, not all of the time
spent in these three states is correctly attributed to these causes, since mem-
ory contention takes a proportional amount of time from each. By this as-
sumption, C = (4 + @ + L)-P,. Thus, if the respective primed quantities
represent the time in each state exclusive of memory contention, A +0+
L=A"+90 + L'+ Cand therefore, A' +0' +L' =(A+0+LXl—
P;). The respective number of equivalent processors in a multiprocessor con-
figuration expended in the various states are the following:

Ny' =Ny (1 = P)

No' =Ny (1 — P;)

N'=N(1-=P)

Ne = (Na+ Ny+ Np)-Pc=N-P
The form of N is independent of Na. No. and N . The value of N¢ in-
(Teases linearly with increasing system size for congruent rectangular in-

Teases, with the slope depending upon the relative speed of the mep\ogcs
4nd processors and the asymmetry ratio. This phenomenon IS shown in Fig.
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8. The dashed lines represent the extrapolations from data presented by
Bhandarkar [6] which resulted from a more accurate Markov chain model
ork = 1.
: The form of the other three expected numbers of processors N, ’, N,’, and
N, ' can be obtained by substitution from previously obtained solutions for
Ny, No. Ni, and Pc. It should be clear that N, * provides a desirable mea-
sure of throughput in multiprocessors by providing the effective number of
processors being applied to the application programs (the real objective of
the system).

To understand the importance of individual processor efficiency on multi-
processor throughput performance, it is interesting to look at the form of

Ny’ ().

_ p-N-(1 — P¢)

Na _N+p+ N—p\
2 ( 2 ) ¢

For large N there is an asymptotic approach to a limiting throughput 7,
and this limit is

T= lliimitNA' =p-(1—Pc)

The trailing factor approaches a limit as well, since in general P, is a func-
_tion of N. Thus, the control program efficiency not only determines the utili-

UHITVALUEO"‘,
0.4 P
- AU I - - 0268
:" k l'mbofpvwrmmnmvmﬁn
g = nE ratio of number of processors over number of memories (n = N/M)
g 0.2 k=1n=172 —
6
J
0 ke2.9°1 - - 0104
g
a
k=3 n=1 — — 0023
0 a s —
40 60 80 100

NUMBER OF PROCESSORS

Fig. 7. Asymptotic approach to limiting memory contention probability values
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Legend:

w— Cata derived from current model

=== deta extrapolated from Bhandarkar’s deta
s megnitude of error
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a o ® o N »
v, v v L4 Al

NUMBER OF PROCESSORS
EXPERIENCING CONTENTION

~
Y

10 2 K 1] 45
NUMBER OF PROCESSORS IN SYSTEM

o

Fig. 8. Number of processors experiencing memory contention
in “‘rectangular’ systems

zation per processor, but also determines maximum achievable throughput
of the entire machine. In Fig. 9 (which represents state of the art capabilities
in large scale multiprocessor systems) there is 2 maximum achievable return
(even with P. = 0) of two equivalent processors applied to application pro-
grims. By adding any number of processors beyond 4, the most that will be

gained is 0.35 equivalent processors applied to application programs.

The multiprocessor application discussed in [2] is interesting in this
regard, however, since for text editing application programs in a multipro-
h as 11.5 was obtainable

gramming timeshare environment, a p value as hig

by using an off-the-shelf executive program. The measured performance
ctions of the current model.

curves plotted in that paper also fit the predi

_ The previous limit equation also indicates the impact of memory conten-
tion on maximum performance. Memory access efficiency pum, the probabil-
be defined as follows:

1ty of not experiencing contention on an access, can )
Ps = 1= Pc. Then, maximum throughput 7 for the whole system 1S equal to

:::meluﬂ of the efficiencies of an individual processor 2p computed with no
tention or lockout, and the pu of the memory accesses:

T = PP PM-

IV. DESIGN TRADE-OFFS IN MULTIPROCESSORS
on is not responsible for

: .
N the example shown in Fig. 9, memory contenti
heir increased number.

Teduced efficiency of processors as a function of 1
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This does not mean that memory contention can T
overhead factor, but it is a problem for which wlu;z:x? :xaistv;ri);hsilﬂglcam
memory and inte.rcon_nection network technology. In the example of Finegt
memory contention is reduced to insignificance by the large numb g :
memory modules (M > N). Another method that solves the memo ezoo.
tention problem, which is particularly appropriate in micropr(?éesszr
systems, is increasing the relative speed of the memories. These solutions are
appropriate respectively to large mainframe configurations requiring a large
memory base to perform their normal operations and to microprocessor-
pased systems for which obtaining relatively fast memories is not strictly re-
quired.

4.1 Reducing Memory Contention

There are, of course, many configurations for which memory contention
appears to be very significant. In the solid lines in Fig. 10, the situation
previously presented in Fig. 9 has been modified to include only five rather
than fifty memory modules. This example actually shows a negative improve-
ment in application program throughput for more than four processors. This
negative return can be attributable to the increasing number of processors
locked out. These processors are assumed to access semaphores in main
memory and thereby contribute heavily to memory contention and are not
productive even when successful. This phenomenon can be eliminated by
assuming that the semaphores are stored in a special purpose memory
dedicated to semaphore control. In this case the ratio of the numbers of pro-
cessors in the three processor states independent of contention are the same.
The effective number of processors competing for memory is reduced,
however, to N4 + No. Estimating Pc for five memories and N4 + N pro-
cessors results in the revised overhead plots shown as dotted lines. The mar-
ginal gain in performance for few processors is apparent. Memory contention
has been effectively reduced, but the advantage has largely been taken up by
increased lockout and system control overhead. This example illustrates thc
very important point that memory contention can be reduced to insignifi-
cance without a commensurable return in throughput. (See also Flores [13].)

4.2 Reducing Processor Lockout

From the preceding discussion, lockout is clearly the primary contribu}or
to multiprocessor inefficiency for large numbers of processors. The starting
Point of reducing lockout is to consider the assumptions that went into the
model of control table lockout. The primary assumption was that the control
tables are locked out throughout the execution of the control program. Thus,

‘:“ approaches in attempting to resolve the control table lockout problems
re to

I design a control program employing a more limited use of lockout,
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7. reduce the execution time of the critical sections in the control pro-

m, and :

3 pmition the control program into many separate critical sections
rather than a single common critical section.

The relative effectiveness of reducing lockout overhead ultimately depends
upon the design of the control program itself. There are upper limits for each
of the methods. The amount of processing power released to application pro-

ms as the result of improvements in these areas will be discussed below.
For few processors (small N) the advantage of reducing the length of critical
sections or increasing the number of partitions is negligible, whereas an im-
provement in control program overhead is an immediate advantage even for
few processors. For large N the improvement in performance has the same
form for reducing extent of critical sections and improving efficiency.

These three solutions have direct analogs in the reduction of memory con-
tention. They are, respectively, reducing accesses to common memory, in-
creasing the relative speed of memory response logic, and increasing the
number of independent memory modules which can be accessed. Solutions
incorporating the three approaches to lockout are illustrated in the following
discussion, the improvements relative to the system whose performance char-
acteristics were shown in Fig. 9. Line A in Fig. 11 represents this baseline sys-
tem's throughput performance.

4.3 Limiting Control Program Lockout

The entire control program need not be locked out so that only one pro-
cessor be executing it at any one time. In Fig. 11, line B, the expected perfor-
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Fig. 11. Comparison of approaches 1o reducing control table lockout
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ance is shown for a system whose control program must be locked out only
half of the time. The data for the figure were obtained using a different value
of p for lockout than for determining the proportion of useful work per-
formed. pLockouT ¢an becomputed as the total amount of time the processor
spends in nonlocked-out processing states divided by the amount of process-
ing time spent in states for which lockout is required. In the current model

this can be expressed as

A+001-2) _p+1 _

PLOCKOUT = 70 Z 1,

where Z is the proportion of the control program requiring lockout. In Fig.
11, line B, p = 2, Z = 0.5, and therefore pLockout = 5.

4.4 Control Program Efficiency

An obviously effective method of improving multiprocessor throughput

would involve directly decreasing the execution time of the critical section
portions of the control program. Figure 11, line D illustrates the perfor-
mance to be expected if the efficiency of the control program were improved

by a factor of 2. In this case p = 4 instead of p = 2.

4.5 Partitioning the Control Program

The lockout which is necessary in control programs does not necessarily
lock out all of the critical sections in the program. Earlier, an equation was
developed for lockout that assumed there wereJ partitions of the control pro-
gram with independent critical sections. This equation was used to obtain the
performance indicated in Fig. 11, line C, forJ = 2. In [20] it was also sug-
gefted that a small number (2, 3, or 4) of partitions significantly improves ef-
ficiency. However, it should be obvious that the limiting number of partitions

that could be incorporated is not large.

4.6 Increasing Individual Processor Efficiency

The level at which application programs interf
f::lm has the same impact on efficiency as the overhcac l .
incrg:ogdram. If the.execution time of the typical application program_las-k i
bled tshe L potnt where the number of executabic instructions is o.nu-
trol - the same efficiency advantage will accrue as if the overhead of the w_n-l
in thti!srogmm were reduced to one half its original value. One must bg g.‘.n'n-uln'
udUce;egarflf however, since the utilization of processors €an be significantly

- Utilization was ignored in this paper by assuming that there are no
::z:ssprs in the idle state. (See Fig. 3.) The job control languages of b'alCh.
$sing systems largely determine the task level. This 1s @ critical issue

ace with the control pro-
head involved in the con-




JAUGHAN 8nd ANASTAS: MULTIPROCESSOR THROUGHPUT PERFORMANCGE

173

ﬁarticum"y in mainframe multiprocessing but is beyond the scope of this

r.
P‘ﬁeu ck [15] investigated fhe potential for breaking up general problems into

rallel segments to obta}n commensurable speedup. The inherent parallel-
ism was roughly Propomon'al to the size of the application program if the
program units which were dispatched were taken to a low enough level. This
finding is in contrast to what was formerly thought to have been an order of
log relationship [15]. Thus, the programs themselves have a potential for
solution by parallel arrays of slow processors to obtain very high throughput.
However, this level would reduce the effective value of A by orders of magni-
tude, which would in turn reduce p (and with it feasibility) by orders of mag-
nitude. Thus, methods which artificially increase p do not attack the muiti-

processor problem.

V. THE FUTURE OF MULTIPROCESSING

The high leverage design considerations in multiprocessing at this time are
control table lockout and the control program overhead. Hardware support
for the multiprocessor executive is the obvious place to look for help. since
the improvement required to realize large arrays of processors is orders of
magnitude rather than simple multiples.

To determine whether there are other theoretical problems, consider Fig.
12. Line A illustrates the system described originally in Fig. 9 but assumes an
individual processor efficiency of p = 100. In this configuration memory,
contention becomes appreciable after about 10 or 20 processors, and the
maximum achievable throughput is about 40 processors. However, as shown
in Fig. 12, line B, the asymptotic limit can be more than doubled by increas-
ing the relative speed of the memory response logic. In this case k = 3 rather
thank = 1,

‘With such high throughput systems, however, there would be require-
ments for commensurably larger numbers of memory modules. Fig. 13, line
A, illustrates the situation for p = 100 with “‘square” multiprocessors
(M = N) and k = 1. The improvement in contention with increasing

;‘"mo")' response time can be seen in lines B and C respectively for k = 2and
=3,

V1. CONCLUSIONS

At least analytically there are no size limitations 10 conventional muit-
Processing approaches which are beyond the current state of the art. excep!
:iOnl'r (.)' Program cfficiency. Hardware seems to be the only effective way of

Bnificamly improving this parameter. Exploring'methods of mcrcasms
tl::?i“':.n support for the control programs is the most likely way wazl::r-
ok s for multiprocessor throughput performance. The authors

Y exploring such an approach |1, 18].
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