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Einstein was uncomfortable with notions associated with an inherent uncertainty 

implied by the Copenhagen Interpretation of quantum mechanics.  Whether we 

ourselves might ever know the precise locations and/or momenta of particular particles 

at particular moments in time, Einstein had faith that at least God had reason to know 

such things.  Far from this revealing an unwavering belief in an omniscient personal 

savior, it merely expressed the metaphysical perspective that everything has to be 

somewhere, whether we know it or not.  And I guess we must grant some, even if 

minimal, credulity to that presumption. 

This insistence on knowledge of the way things are, as against what is measured 

or observed, came increasingly to haunt his work and that of the many dedicated 

theorists who have religiously pursued those paradigms Einstein established.  The 

Great Divide between two major branches of physics − on both sides of which 

Einstein's influence was monumental − involves this very issue.  He opted in favor of 

determinism early on in his work with relativity, although his initial philosophical 

leanings seemed more definitely positivistic.  Those early tendencies are revealed by 

comments such as, "we entirely shun the vague word 'space,' of which we must 

honestly acknowledge, we cannot form the slightest conception, and we replace it by 

'motion relative to a practically rigid body of reference'." He had also indicated that 

spacetime coordinate magnitudes should be regarded as though the actual "results of 

physical measurements."  But in interpreting values that result from the Lorentz 

transformation equations − the formal basis of his theory that he had thus insisted be 

directly measurable – he failed to question all of the common-sense notions of his 

time.  Valid explanations of 'double slit' and other high-profile experiments and related 

phenomena that assure us that light is anything but common sense, were unknown 

when Einstein coined his phrase "the law of transmission of light" for this common-

sense notion that even a photon must be somewhere.  But we know they are not some 

particular where!  They seem, in fact, to be nowhere until and unless they are 

observed.  But this "law" was not specifically about how light is transmitted per se, but 

about the meaning of relativistic aberration − a legitimate hypothesis in as much as it 

is certainly refutable.  But because it seemed merely 'common-sense,' apparently no 

one ever bothered to doubt it sufficiently to attempt a refutation.  But in this universe 

any legitimate God who could be invoked in a scientific context, blesses doubt! 



Aberration caused by relative motion was familiar phenomena years before 

Einstein's relativity came along.  It is very much like parallax in which separated 

sightings of the same field of objects result in distortions between observers' fields of 

view.  The illustrations below illustrate this effect for parallax where observers have 

different perspectives on objects arising from differences in their viewing locations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Parallax provides a useful analogy for explaining aberration.  And it is easy to 

show that differences as well as similarities between parallax and aberration effects 

derive from the finiteness of the speed of light.  Further, the fact that its speed can be 

considered the same (in a vacuum) for every observer accounts for relativistic 

aberration differing slightly from what had been thought to be the case earlier.  These 

facts necessitate that the distances that light travels, c t and c t', in the first panel of the 

figure above, differ for two observers both for parallax and for aberration – except, of 

course, for the special case of an object occupying a position on the perpendicular 

plane bisecting their line of separation. 

In the analogy of relative motion, for which relativistic aberration applies, the 

universality of the speed of light imposes constraints associated with the triangle K'KA, 

the geometric details of which define coincident observation of such relatively moving 

observers.  Apparent differences in perspective for such coincident observers caused 

by their relative motion are extremely similar to those caused by a separation between 

relatively stationary observers since there had, in fact, to have been spatial separation 

between the observers at the time the observed light would have been emitted from the 

object.  In the figure, observer K' moves with respect to K such that  t' = X, the 
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analogous separation in a parallax situation.  The two angles  and ' at which an 

object is observed will be given by the relativistic aberration formula to be discussed 

in detail later.  The extent of the difference between Einstein's relativity and previous 

considerations involves the constancy of the speed of light to produce the relationship, 

i. e., it derives from Einstein's Second Postulate. 

However, where there are multiple objects at various distances (and velocities) 

being observed, distortions resulting from parallax computations become largely 

unpredictable from a single observation point as shown in the second panel of the 

figure above.  Displacements m of objects within a field of view of K' relative to 

where the object was viewed by K cannot be determined exclusively from angular 

measurements made by K of the object m.  For its determination there must be some 

a priori knowledge of the relative distance and directional velocity of m.  It is a 

singular fact, however, that such nondeterminism does not arise in relativistic 

aberration formulas when (or because) Einstein's 'law of the transmission of light' is 

applied.  In that theory, whatever is observed by K can be unilaterally transformed to 

obtain a corresponding observation in K' with absolutely no knowledge of static or 

dynamic information of the objects being viewed relative to either observer! 

Does observation bear this out? Even the closest of the distant stars are so remote 

that during the course of an entire year their considerable velocities do not appreciably 

alter their apparent positions in the sky.  This fact is used in analyzing eclipse data to 

determine the bending of starlight around the sun; whatever differences appear in star 

field observations made six months apart can be used to measure the effect of gravity 

on the photons of the light from these stars during eclipse.  However, gravitational 

effects of the sun and moon that intervene in the one image and not the other do not 

produce the most significant differences in registration of these star fields.  The fact 

that the earth is moving in the opposite direction at orbital velocity in the two instances 

produces a much larger effect.    

The duplicate star maps that are used have inevitably been 'observed' while in 

approximately uniform relative motion with relative velocity twice the orbital velocity, 
i. e., about 36 miles per second, producing a special relativistic aberration effect much 

larger than the gravitational (general relativistic) effect.  This aberration effect 

produces an angular displacement of more than 40 arc seconds (see figure on page 5), 

whereas the gravitational effect is less than 1 arc second at two angular radii from the 

sun.  So displacements in stellar images, obtained at observations six months apart by 

(effectively two separate) relatively moving observers superimposed upon one another 

in a best fit (as in the figure of data from the 1922 eclipse on the next page) but offset 

by 41 arc seconds, are all that can then be used to register maps as a basis for measuring 

the gravitational effect. Over the extent of the several-degree star field, differences in 

morphology (as against the total aberration effect) caused by annual motion of the 

earth about the sun should be less than about 0.2 arc seconds.   This is according to 

Einstein's conjecture of the applicability of the Lorentz transformation calculations 

employed by the special theory of relativity to account for such cascaded phenomena. 
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stellar displacements (away 

from filled circles) as they 

were prepared by Campbell 

and Trumpler (1923) in 

analysis of eclipse of 1922.  

(Dotted lines represent the 

sun’s corona.) 

 

But actual data taken during solar eclipses 

reveal much broader variation than this.  (See 

the figure at left.)  Error analyses suggest that 

even though a least-squares fit of data does 

confirm predicted gravitational effects – 

actually in excess by an appreciable percent-

age across the entire star field – a satisfying 

rationale for the magnitude of variation has 

not been achieved.  This has not changed in 

all the years since this effect was first 

observed.  Misner, Thorne, and Wheeler 

provide Dicke's summary of results through 

1964, "The scatter would not be too bad if one 

could believe that the technique was free of 

systematic errors.  It appears that one must 

consider this observation uncertain to at least 

10 percent, and perhaps as much as 20 

percent."1  Radio astronomical results reveal 

the same order of magnitude uncertainties as 

do the optical observations.  There is some 

azimuthal dependence in the uncertainties as 

one might have suspected, but as shown for 

the displacement identified as "113" in the 

figure, oppositely-directed displacements far 

exceeding the magnitudes of the predicted 
gravitational effect occur as well.  (Notice 

that in the figure the displacement scale is 

greatly expanded relative to stellar positions.) 

Might this be a refutation of Einstein's 

conjecture concerning that law of the trans-

mission of light or just some fluke of a truly 

difficult observation?  What if stars winged 

about at appreciable fractions of the speed of  

light as occurs at submicroscopic levels of our universe rather than mere tens of miles 

per second? Could usable maps be constructed that would have even nominal utility 

by another observer? 

Einstein's special theory provides deterministic mappings of observations of one 

observer onto those of another in uniform relative motion.  This is true even in cases 

where observations pertain to events on world lines of objects at widely varying 

distances and velocities.  When interpreting the results of Lorentz transformations 

according to Einstein's hypothesis of the law of transmission of light, all variation 

becomes moot.  This "law" is effected by imposing an additional constraint on the 

Lorentz equations, namely the "velocity addition formula", that has never been 



independently confirmed, or non-refuted as a scientist would prefer to say, by any 

experiment but is a 'necessary' consequence of one interpretation of the Lorentz 

equations as a 'transformation' rather than as merely establishing a 'correspondence' 

between actually observed events on the world line of the same object. 

This peripheral dogma only comes into play with regard to events on 'third party' 

platforms; they would otherwise need to be mapped using direct assessments of 

relative velocity.  What this frame independent 'buddy system' enforces is that the 

Lorentz equations produce a single coordinate direction independent of differences in 

the relative positions and velocities of the sources of all the events seen as occurring 

in this direction by one particular observer in his spacetime.   That seems to the author 

to negate the very purpose and usefulness of relativity as a coordination (as against a 

pre-determination) of 'observations'. 

In 'observing' an event as against one merely 'hypothesizing' it for someone else 

whose composite relative spacetime situation we cannot assess – as indeed we do not 

even completely know our own – with regard to the source of events before the 

observation is made, actual observation is key.  By various inferences one observer 

might be able to deduce from line spectra that the object has a specific radial velocity, 

but one still would not know its tangential velocity with any accuracy at all.  The 

supposition that relativity can precisely transform observations made by one observer 

into what any other observer with a known relative motion (with respect to the first 

observer) could expect to observe – independent of the nature of what is to be observed 

– seems to the author patently absurd. 

Certainly the conjecture is refutable, and yet, refutation pends an actual two-

observer observation situation, foregoing a natural urge to gedanken experiments that 

are particularly vulnerable when testing common sense notions! 
But first we must know what to look for.  We'll discuss that next. 

 

 



The Certainty Principle 
 

As stated earlier Einstein's use of a common-sense notion of ‘the law of 

transmission of light’ that was prevalent at the time, constrained his interpretation of 

the Lorentz transformation equations – determinism being the inevitable result.  Let's 

consider this in more detail: 

Suppose that we (observer K) are coincident with another observer K' who is 

moving at the velocity  = 0.1 in units of c with respect to us in frame K.  And let's 

suppose further that there are stars or other sources of radiation observable from a 

distance, and that these sources have random velocities that are as high as half the 

speed of light.  To coordinate observations with K' we employ the relativistic 

aberration formula derived directly from the Lorentz's equations: 
 

cos ' = ( cos   −   ) / ( 1 −  cos   )  
 

Notice in the figure at right that lines ct', ct, and t' 

do not form a triangle.  (At least formally there are two 

events.)  The deviation between angles, ' =   − ’ is 

shown as the curve in the figure on the previous page. This 

curve shows the amount of aberration between the two 

observers' observations as a function of the angle of the 

observation with respect to the direction of their relative 

motion.  Whereas with only twice earth's orbital velocity 

the aberration would reach merely 41 arc seconds as men-

tioned in the previous article, here it is nearly six degrees. 

But other than the differences across a field of view, this can easily (and deterministic-

ally) be compensated.  But with regard to events on objects moving relative to both 

observers what is the situation? 

Let us consider light from an event on an object 

whose velocity is B = 0.5 relative to us in K and along the 

direction of our relative velocity with K'.  And suppose 

that there is a third observer K" – stationary with respect 

to that object who just happens to be coincident with K 

and K' at the moment we all make our observations for 

comparison.  K" sees the event at ", as shown at right.  K 

will see the same event at the angle given by the following: 
 

cos  = ( cos ” – B ) / (1 – B cos ” ) , 
 

and likewise, therefore, we have: 
 

cos ” = ( cos  + B ) / (1 + B cos  ) 
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We wish now to determine where such an event will appear for K' who happens 

at that instant to be coincident with both K" and K when they observe the event.  To 

accomplish this goal of third-party coordination according to the established theory, 

the following relativistic velocity addition formula (what is called 'boosting') must be 

employed: 

 

B’ = ( B + ) / (1 +  B ). 
 
By substitution we obtain: 

 

cos ’ = ( cos ” – B’ ) / (1 – B’ cos ” ) 
 

 = [(1 +  B ) cos ” − ( B +  )] / [(1 +  B ) – ( B +  ) cos ”] 
 

To assess how this affects the displacement of events from the perspective of K' 

corresponding to event transformations from our own relatively stationary apparatus 

in K, 1, we must substitute now for cos " from the equation above, so that now we 

obtain the following: 

 

cos ’ = [(1 +  B ) ( cos  + B ) – (B + ) (1 + B cos )] 
 

  / [(1+  B ) (1 + B cos ) – (B + ) ( cos  + B)]  
 

Then by carrying out the operations indicated and canceling factors we find that: 

 

cos ’ = (cos  −  ) / ( 1  −  cos  ) =  cos ’ 
 

This is not dependent on B, such that the very same angle results between K' and K in 

both cases, which is rather amazing if you think about it – or I guess more assuredly, 

if you don't.  As shown in the figure above the events labeled E1 and E2, which are at 

least by formality treated as separate events, are situated to the right and left of E0 

respectively, and yet all three are hereby said to be at the very same angle for K' no 

matter how this defies depiction. 

It is very obvious why in all cases it turns out this way.  According to the common-

sense notion embodied in the law of transmission of light, whatever anyone sees at a 

point in spacetime, any other coincident observer should also be able to see so that all 

events seen while in coincidence are mutually shared.  (The velocity addition formula 

guarantees this will be the case.)   'Seeing' just involves photons, after all, that happen 

to hit one observer in the eye rather than another coincident observer…right?  Well, I 

don't think light works that way, but pursuing this as though we do, we find that the 

velocity addition formula is shorthand for a cascading of the Lorentz equations to 



substantiate the claim that they form a 'transformation group'.  The logic behind this 

accepted approach to coordination of observations is the following: 

If we let L() represent the Lorentz transformation of event, , such that:   

 

(t’, x’, y’, z’) = L  (t, x, y, z) 

 

and 

 

(t, x, y, z) = L (t”, x”, y”, z”), 

 

then, does that imply: 

 

(t’, x’, y’, z’) = L  (L  (t”, x”, y”, z”)) 

 

or not?  That is the question.  If so, it would make sense to define: 

 

L ’  L  ( L ), 
 

which implies: 

 

B’ = ( B +  ) / (1 +  B ) 

 

as inferred by Einstein and Minkowski. 

With this accepted logic there can be no basis in the established theory for any 

uncertainty in predicted angular positions of events in space no matter what the 

unknown and unknowable variations in the velocities of the objects on which the 

events arise.  The velocity addition formula distorts all space and time to collapse 

separate events E0, E1 and E2 to the net effect of preserving determinism. 

But what – other than an archaic notion of 'common sense' and expediency – 

necessitate that the Lorentz relationships must constitute a coordinate transformation 

rather than a mere transactional correspondence?  The answer is:  Nothing! 

All this abracadabra is unnecessary if we free ourselves from the notion that even 

a photon must be somewhere available for scrutiny by either of alternative observers 

as dictated by the so-called ‘law of the transmission of light’.   We'll have to determine 

whether discarding such an obsolete notion brings relativity into agreement with 

observations of course.  It is tempting to suggest that possibly the eclipse data, 

discussed earlier, refute Einstein's velocity addition formula, but the uncertainties there 

are too large to be due to the instantaneous relative velocities, so it is felt that the 

magnitude of those uncertainties relate more directly to something else entirely, like 

possibly the range of likely accelerations of stars in the star field or scattering 

phenomena – all interesting issues to discuss sometime. 

  



The Overarching Significance of 

Angular Observations 
 

This volume (Aberrations of Relativity, from which these articles have been taken) 

is somewhat dedicated to the idea that aberration is the real phenomenon of relative 

motion and that one must deal with that first and foremost when trying to understand 

the manifold ramifications of relativity.  Here the attempt is to ferret out a different 

aspect of that same notion.  Although also accepting the same body of experimental 

data accepted as legitimate by establishment with regard to aberration, the author 

stubbornly maintains that observations involving this phenomenon are more 

reasonably accepted as the most essential aspect of relative motion and would more 

properly be acknowledged as the phenomenological base of any associated theory. 

Einstein and Minkowski asserted that the Lorentz equations constitute a 

transformation in the same mathematical sense as a rotation of spatial coordinates 

accompanying deterministic shifts in the locations of points on a rigid body.  The 

analogy accommodates (actually enforces) completely deterministic relationships 

between observations of the universe (however predictably distorted) from any one 

observer to any other in uniform relative motion through a vacuum.  In a very real 

sense, equations of this form could provide such a function, but the author maintains 

that it transforms the perspectives of the observers, not the realities that surround them, 

which distinction has extreme epistemological significance of course, and is thus 

worthy of some discussion.  The equations provide in any case a most likely place to 

look for a corresponding event viewed from a relatively moving frame of 
reference.  But the inevitable determinism associated with the established 

interpretation is unnecessary and, since it is incompatible with other highly successful 

theories of physics, it seems reasonable to attempt to find viable alternatives, 

subjecting all options to scientifically refutable experimental test. 

It has been suggested elsewhere that Einstein's law of the transmission of light 

which is the ontological basis of the established interpretation of the Lorentz 

correspondence between measured space and time values is invalid in light of 

subsequent discoveries.  Furthermore, it denies validity to actual measurements since 

once an event has been observed by one observer, what could be observed by any other 

observer is, thereby, completely determined. Logical consistency therefore forces us 

to seek alternative explanations of the pertinent and unilaterally accepted experimental 

results. 

The velocity addition formula, discussed in the previous article, is not a necessary 

concomitant of maintaining that all motion is relative, but is required merely to support 

the currently accepted interpretation.  In this article we discuss comparisons with the 

implications of a relativistic theory that retains a traditional velocity addition 

formula.  Notice that abandoning this particular facet while retaining the Lorentz 

relationship between observed angles and distances to events, in no way jeopardizes 



 
 

panel a. panel b. 

antinomy in the underground observatory, 
drawn by R. F. Vaughan author circa 1975 

any other acknowledged postulate of Einstein's relativity.  The speed of light is still 

accepted as the same for every observer of an event, etc.   

We will make several fascinating observations:  First of all, if an observer were to 

have a firmly affixed transparent celestial sphere marked off with traditional 

declination and right ascension grid lines for easy reference to the directions of his 

observations, then the lines marked out on this sphere would transform for another 

observer in relative motion as determined by the Lorentz transformation 

equations.  But stellar or other external objects that were aligned with those marks for 

one observer would not possess the same (however distorted) alignment with respect 

to these grid lines for another observer unless the objects happened to share the motion 

of the first observer.    If, for example, an object appeared at the interstices between 

declination 89, 59', 59" – 90 and right ascension 101 – 101, 1', 1", it would not reside 

between those lines if its motion relative to the first observer were sufficiently 

great.  Where it would actually appear would depend intimately on its unique relative 

velocity.  That is actually what relative-to-me rather than relative-to-him is all about 

whether the "him" is taken as an ab solute reference or not.   
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Quite independent of one's stance on 

the velocity addition formula, one should 

realize that any constructed celestial 

spheres would differ considerably even 

with regard to the 'fixed' observations of 

another observer.     See panels a. and b. 

in the figure above.  Observations that 

appear straight-up for one observer will 

be displaced toward the horizon for 

another in relative motion.  This is shown 

succinctly in the figure at top right, where 

the geometric distortion between the two 

becomes painfully obvious.  

If its relative velocity were near that 

of the velocity of light, the source of a 

light emission event would appear at an 

increasing distance back along its path of 

approach.  This is all very obvious if you 

think about it:  Trace out a line of sight to 

a point on the world line of the object to 

determine the transit time for light from 

the object, then draw out the motion of the 

object from this position (A in the figure 

at bottom right) to a distance V t further 

along its world line trajectory (B) which 
will be how far the object travels while 

light is proceeding to this observer.  This 

construction epitomizes Lorentz relation-

ships between observations of observers 

in relative motion.   A coincident observer 

stationary with respect to the object would 

not observe the object at the specific 

location B obtained by this construction, 

but at B' only because of the factor 

of .    And if it is given that the relatively 

stationary observer observes the object at 

location B', then where an observer in 

relative motion will observe the event is 

at A  A' which must be determined by 

reversing the source velocity in the 

Lorentz equations for that observer.  The 

aberration formula is the following: 
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cos ’ =  
 

 

In the following figure we use this formula to illustrate the predicted angles ’ 

that correspond to the various angles  with relative velocity ranging between the 

negative and positive value of the speed of light – approaching and receding sources 

of observed events.  So for any given observed event in one frame of reference, event 

coordinates that would be observed by another observer is easily calculable.  

 
 

All this discussion applies without too major disagreements on account of one 

insisting on one alternative interpretation or the other and the epistemological meaning 

of the associated Lorentz formulas – at least this is true to the extent of it making an 

easily quantifiable difference.  Most macroscopic 'objects' continuously emit photons 

and a relatively 'stationary' observer will see all of these events as occurring at the 

same location and distance in the past.  The only question is which one of these 

cos  − V/c 

1 − [V/c] cos 

 



continuously replaced events a coincident relatively moving observer will actually 

witness for appropriate comparison.  But this applies only to a world all of whose 

observable objects are stationary with regard to one observer or the other.  What about 

a truly dynamic world, the real world, the one we live in?  Where there are multiple 

motions such ambiguities must needs be resolved. 

In this more generalized case, the observed location and time of occurrence of 

witnessed events will depend intimately on the individual motions of the platforms 

upon which the events occur just as we have seen above, and neither observer has a 

monopoly on the angular orientation of an entire sequence of events occurring on an 

object.  Knowing the individual motions and when and where the events occurred in 

the stationary frames of the various objects, we could predict precisely where and when 

each event would be witnessed using the appropriate set of Lorentz 'transformation' 

equations that relate the frame of the object and that of any particular observer.  About 

that there is no controversy.  However, whether knowing the observations of a single 

observer, but without foreknowledge of where and when the observed events occurred 

in the various frames of reference of the objects upon which the events actually 

occurred, is sufficient to determine similar angular observations for another observer 

in uniform relative motion is what is at issue here. 

Undismayed by the fact that a myriad of unique transformations would be required 

to determine the coordinates of any observer's observations, Einstein's interpretation 

of the Lorentz equations is that they have sufficient power to disambiguate all the 

uncertainties in predicting the observations of a second observer knowing only his 

motion relative to the first.  This 'feature' of that interpretation – if you consider it such 

– is valid if and only if Einstein's velocity addition formula is accepted as true as we 

saw in the previous article.  This formula (if valid) would allow one to group all of the 
various possible motions of objects upon which observed events appear to occur at a 

given angle for the first observer into a single transformation group that all transform 

to the very same angle for a second observer independent of their individual relative 

motions, again as shown in the previous article.   If the set Vi includes all the unknown 

individual velocities of objects on which events occur that are seen in a given direction 

by one observer and v is the uniform relative velocity of the two observers, then the 

velocity addition formula maintains that the set of velocities of the objects in the frame 

of reference of the second observer would be Vi', as given by: 

 
Vi’ =  , 

 
Here only the velocity component along a single direction of relative motion will 

be considered.  If this formula is valid, then all events designated by i observed as 

occurring along the given line of sight by one observer will appear along a single line 

of sight also for any other coincident observer no matter what his motion.  This is not 

'more relative' than the traditional formula Vi' = v   Vi, of course, although it is much 

more handy if one wants to sweep uncertainty under the rug.  But if we have learned 

v  Vi 

1  v Vi /c2  



anything during the last century, it is that uncertainty will not be swept under the 

rug.  So we are left to assess whether – in addition to being handy – this formula 

happens to be scientifically valid. 

The first line of thought to be pursued in this regard should be whether there is a 

quantifiable difference that would refute one formula or the other.  To this endeavor 

one must compute the difference between the associated aberration angle predictions 

because that difference is the uncertainty that would pertain if Einstein's and 

Minkowski's interpretation is incorrect.  If they are correct, then uncertainty's entry 

into our world must be via some other route.  The two equations to be tested are: 

 

cos EM’ =  
 
and the boosting alternative, 

 

cos EM’ = 
 
Naturally large relative velocities are required to make a measurable difference in 

the values computed in the two cases.  There is also an angular dependence that affects 

the size of the difference.  These variabilities are all exhibited in the figure that plots 

 on the following page. 

Clearly the predicted uncertainties associated with the traditional formula become 

very large for large values of v and V i.  But for velocities experienced even by the 

earth in its orbit about the sun (an annual variation of 2 x 10−4 c) a maximum 

uncertainty to be expected of stellar observations is smaller than the resolution of 

telescope observations – in fact, much less than 10−9 radians.  But we have become 

accustomed to our macroscopic world not seeming to exhibit uncertainties known to 

characterize microscopic domains to which quantum realities pertain. But in 

thermodynamics, where molecular velocities at quite mundane temperatures can attain 

component velocities that are appreciable relative to the speed of light, some strange 

things happen. 

It should be noted that the velocity addition formula (boosting) as discussed here 

does not pertain to the velocity of a photon of light emitted from a relatively moving 

source.  Photons are not 'objects' in any similar sense to that of billiard balls.  The 

'velocity of light' to the extent that light can be considered to travel through space must 

be handled differently as double slit and other experiments with light have indicated. 

So without sufficient instrumental accuracy to refute one interpretation or the 

other, is it really reasonable to fight quite so vindictively for the established view based 

on a 1906 vintage 'law of the transmission of light'? Letting it go may be the key to the 

compatibility of the so disparate theories of physics, the dissimilarities of which 

involve the treatment of observation and uncertainty both at issue here.  Certainly there 

cos  − (v  Vi) / c 
1 − [(v  Vi) / c] cos  

cos  − (v  Vi) / ( 1  v Vi /c2 ) c 

1 − [(v  Vi) / ( 1  v Vi /c2 ) c] cos  



is reason for confusion in this regard and one can never return to that state of bliss 

before relative motion was found to legitimately confound all epistemological options 

concerning our perceptions.  The relative locations and times of occurrence that one 

must associate with observed events that are being viewed here and now differ 

considerably from one observer to another who does not happen to share the same 

relative velocity to observed objects.  The fact that one of the implications of relative 

motion may be weirder than was first thought, while others are less so, need hardly 

alarm a world accepting of uncertainty.  That those implications should altogether 

prohibit laying out mutually agreeable arrays of numbers as a metric of a physical 

space and time acceptable to any and all observers for all time, giving rise to 

epistemological problems in dealing with such anomalies should prove little more than 

fascinating. 

 



Of course, there are weighty issues at stake with regard to changing the established 

interpretation.  Much of the dogma associated with spacetime would be rendered 

supercilious were we to embrace something closer to what Kant conceived – space and 

time (and indeed all mathematics) as logical rather than physical constructs.  It seems 

to the author that space and time are merely associated with our view the world, not 

empirical knowledge concerning the world itself.  This is what we should always have 

anticipated and questioning an establishmentarian view that has remained sacrosanct 

for too long, has scientific value as well.  

Although one's reputation could be in serious jeopardy if one were to attempt to 

disassociate what God himself (according to one guru or another) seems to have united 

in holy matrimony, it can provide a certain amount of exhilaration so necessary for 

aging curmudgeons such as the current author.  So he will allow himself the luxury of 

contemplating even such a disaster as a divorce of space and time, remembering that 

idyllic virginity before Minkowski sanctified their holy union with, "henceforth these 

two shall be one!" 

 

 

 


