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The general objective of the approach recom-
mended in this paper is to reduce the cost of
computer systems which require more throughput
than can be afforded by single microprocessors.
It proposes the construction of systems of multi-
ple microprocessors operating in a "tightly
coupled" mode. The approach has been shown to be
potentially applicable to systems of up to about
100 microprocessors operating in parallel. The
specific characteristics to be described include:
A system architecture which supports the separa-
tion of control and computation; a separate pro-
grammable control device which effectively re-
duces the multitasking overhead; and a configu-
ration of multi-microprocessors which reduces
memory contention.

Introduction

Microprocessors can be shown to provide a
basis for a standard building block approach for
tightly coupled as well as loosely coupled ADP
systems. The more difficult programs associated
with the former systems have been shown to
derive primarily from the extensive software
control overhead required to coordinate such

tightly coupled syst.ems.]':;']8 The computer
architecture described in this paper addresses
these problems.

The architecture involves two distinct
aspects: Data transformations and program con-
trol. The control aspect determines which data
transformations are to be performed based upon
the current state of the system reflected in a
system status vector. The control aspect has
been allocated to a programmable hardware device
called a "System Controller" which provides the
equivalent of the multiprocessor executive
functions with an overhead which is orders of
magnitude less than for a conventional executive.
The individual data transformations are performed
by application programs executing in micro-
processors. The configuration is shown in
Figure 1.

There are four major areas to be described:
1. The abstract model of computer architecture,

2. The System Controller and processor interface
operation,
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Figure 1: Microprocessors Configured As A Transition
Machine

3. The multiprocessor configuration design
approach (processor grouping, global memory and
bus organization), and

4. The microprocessor firmware specification.

Computer Architecture Model

Multiprocessor Architecture

For tightly coupled multiprocessor systems,
common task control queues maintained by the
operating system require lockout protection
against simultaneous access by more than a single
processor. The overhead induced by this queue
lockout cannot be bounded in the same sense as
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memory content1'on.3’]6 Various queueing appro-
aches with their implied critical section lock-
out characteristics were accommodated by a model
described in reference 3 (and summarized further
on) to determine best approaches to reducing
overhead from this source. It was shown that to
obtain a significant improvement, the task
queueing and scheduling overhead must be signi-
ficantly reduced. The problem of task control
in the multiprocessor was therefore intensely
studied. A new approach consisting of a hard-
ware device which performs the function of a
traditional multiprocessor executive was devel-
oped. The advantage of this approach is an
extreme reduction in overhead. Results of this
study are to be described, with design details
provided in reference 4.

Hardwiring an executive program is not in
general a feasible approach although it has

been done for specific systems.6 It is the dy-
namic request basis of executive programs that
reduces feasibility in the general case for
large systems. To avoid these problems, an
abstract model of computation has been used as
the basis for a hardware/software architecture
for which requests are not required. This
abstract model is called "Named Transition

S_ystems".]3 The architecture of the machines
derived from it are called "Transition Machines".

Application Program Structure

The application program structure which
runs on Transition Machines has been shown to
exhibit considerable software development and
maintenance advantages over conventional struc-

tures.2 The structure involves a single con-
struct for every software procedure, character-
ized as follows:

when (a set of conditions are met),
do (a data transformation)

The statement that "a set of conditions are
met" is an assertion of propositions on the
system data base which define the appropriateness
of the data transformation. The types of pro-
positions on the data base that can effect the
eligibility of application programs are:

1. A data element is available/not available
for use in subsequent computations,

2. A data element satisfies/does-not-satisfy a

specified relation to some constant or other data

element (for example: a < b), and

3. A data element can/cannot be updated.
Maintaining the status of these conditions
and performing the operations required to deter-
mine the eligibility of individual programs
based on it have been allocated to a separate

- control device in Transition Machines.

The "data transformation" can be implemented
as a sequential set of programmed operations on
data, performed by microprocessors sharing a
common memory.

It can be shown that any program can be
written (or alternatively translated) into this
When Block format. This is based upon the proof

of Bohm and Jacopini8 that any program can be
written as a "structured" program.

Abstract Architecture Model

Figure 2 shows a general characterization of
this architecture; it is comprised of two major
components as was the computation structure
described above. The control component maintains
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Figure 2: Components of Transition Machine
Architecture

status indications for all of the relevant data
base conditions in the system. It also contains
indicators associated with each application pro-
gram specifying the subset of the global set of
conditions required to enable the specific pro-
gram and indicators specifying the modification
to the global set of conditions implied on com-
pletion of the program. The computation com-
ponent executes the code associated with the data
transformation aspect of each program, and
returns data-value-dependent status conditions
to the control component.

The operation of these two components is as
follows: The control component first determines
an eligible application program by examining the
current status of the global set of conditions
specified by each requirements indicator associ-
ated with the program. An eligible subsystem is
identified to the computation component which
then executes the specified sequential arithmetic
operations associated with the application pro-
gram and returns status indications specifying the
conditions that have been modified dynamically by
the program. The control component updates the
global condition status indications associated
with having completed the program. The cycle is
then repeated until the system runs to comple-
tion.




The dynamic status update is a requirement
imposed py having no data base operations per-
formed directly by the control component as part
of the eligibility determination. The control
component must therefore separately maintain
status indications of relevant conditions current
in the data base. This is accommodated by incor-
porating an update to the global set of condition
status indications on completion of each program.
There are several possible modifications to the
condition status indications that may be implied
on completion of an application program. They
are as follows:

1. The condition remains unaffected by the
program running to completion.

2. The condition is satisfied whenever the
program runs to completion.

3. The condition is negated whenever the
program runs to completion, and

4. The condition status is determined dyna-
mically by the execution of the program.

The first three updates are of an implicit
nature, i.e., on completion of the associated
application program the status of each of the
conditions can be statically determined inde-
pendent of the data values. The fourth update
must be returned by the computation component as
the result of an explicit operation on data at
completion of the data transformation. This
allows incorporation of condition updates deter-
mined dynamically during the data transformation.

Control Component Design

To implement the control component as a
device, referred to as the System Controller, a
set of data constructs has been defined on which
logic operations can be performed to efficiently
implement the required control functions. These
constructs include the following:

S = A single globally defined system status
vector which contains one binary status indi-
cator for each data base condition which is
relevant to the eligibility of at least one
application program.

R = A relevance vector for each program which
contains one binary status indicator for each
data base condition maintained in the system
status vector, indicating whether or not the
condition is required to enable the associated
program. (The set of globally defined condi-
tions maintained by the System Controller is
defined as the union of all conditions re-
quired to enable the individual application
programs which comprise the system.)

E = An eligibility vector which contains one
binary status indicator for each application
program, representing the eligibility or
non-eligibility of the program.

Figure 3 shows the dimensional relationships
of these constructs. The R vectors are arranged
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Figure 3: Dimensfonal Relationships of S, E, and R

in a matrix form as shown and the E vector can
then be generated by forming the logical "dot"
product of the R matrix and the S vector:

E = R-S
The details of this and other operations are des-

cribed e]sewhere.4 It is this basic matrix
operation that the System Controller performs to
determine the eligibility of application programs.

To incorporate the update to the S vector on
completion of a program, the following additional
constructs are defined:

U = An update vector of fixed indications for
each application program, designating the
modification implied to each data base con-
dition at completion of the program. Ele-
ments of this vector take on one of four
possible update values: set true, set false,
not changed, or determined variably during
program execution.

D = A single variable (dynamically updated)
vector returned by the computation component
to the System Controller on completion of a
program. This vector contains one binary
status indicator for each data base condition
indicating the status of conditions which are
to be determined dynamically during the exe-
cution of the program.

The U vectors can be arranged in a matrix
form, where each row of the matrix is associated
with an application program and each column is
associated with a data condition. As described
previously, elements of this matrix have one of
four possible values. Two binary indicators
(T and F) for each element (or equivalently, two
separate matrices) are therefore sufficient to
support this representation. Table I shows one
possible sense assignment for T and F. The up-
dated status vector can be computed as a fixed



TABLE I: Update Matrix Definitions

r, l" l‘ NEW IMPLIED MODIFICATION TO !‘
0 [ v‘ SET VAPIABLY TRUE 0R FALSE
4] 1 (4] SET FALSE
1 0 1 SET TRUE
1 1 S, oL UNCHANGED

5‘ NEW = (T‘ A F‘) v (F‘ A V‘) v (YJ A SIOLD,

lTogical expression of the current S vector, and
the T, F, and D vectors associated with the com-
pleted program. By defining the sense of T, F,

and the logical update expression appropriately,
a mask against unauthorized dynamic changes to

S through the D register has been provided.

Finally, to dispatch an application program
(the data transformation aspect) to the computa-
tion component, three additional constructs
associated with each application program are
included in the System Controller. These are
"read", "write", and "execute" descriptors which
allow/restrict the computation component to per-
form only the specified data transformation on
the specified data items. These values are
stored in special task interface registers in
the processor when the program is assigned to
the processor. A multiport controller provides
the synchronization required for interfacing
the task interface registers of multiple pro-
cessors to the System Controller.

The overall operational flow of the System
Controller in conjunction with the computation
component i$ shown in Figure 4.

Multi-Microprocessor Configuration

To support the development of a multipro-
cessor configuration of microprocessors, analyti-
cal work was performed to aid in defining opti-
mal configurations. A general parameterized
model of the major overhead contributions was
developed. A processor utilization model and a
memory contention model were used to study and
determine preferred methods to reduce the effects
of processor utilization, memory contention,
multitasking control, and processor software
Tockout associated with multitasking. The rela-
tive affects of control program execution over-
head, control program lockout and memory conten-
tion were determined and are described in refer-
ence 3. It was shown that memory contention
overhead can be contained within bounds, and
that the control program execution overhead is
indirectly responsible for the non-1inear return
of throughput, through the contro] program lock-
out as shown in Figure 5.
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Memory Organization

Various methods of connecting multiple pro-
cessors to a common memory can be employed to
reduce memory contention so that it need not con-
tribute appreciable overhead. These methods in-
clude the use of multiport/multibus organi-

zations11'12, address inter]eavings’7'9, fast

memories, time-phased processorsls. a large
number of independent memory modules (M) relative
to the number of processors (N), and combinations
of these approaches.

"Square" multiprocessors (equal numbers of
processor groups and memory modules) exhibit a
probability of memory contention which is very

small, and is independent of system size]o. Arbi-




trarily small memory contention characteristics
can be realized in systems which "grow" in con-
gruent “rectangular" form. Figure 6 illustrates
the expected memory contention probabilities for
various ratios of numbers of processors and
memories as systems increase in size proportion-
ately. Fiqure 7 illustrates the effect of varvina
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Figure 6:Memory Contention Probability Limits

For “"Rectangular" Systems(N=n.M)

processor request and memory response logic timing
ratios. Both of these figures assume random mem-
ory address determination (approximately realized
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by address interleaving) and that each processor
makes a synchronized memory access on every cycle
which is a worst case assumption relative to typi-
cal off-the-shelf microprocessors. These results
are derived in reference 3. For the TI 9900

which is being employed in an eight processor pro-

"totype system (and many other commercially avail-

able microprocessors) the latter assumption is
too austere since typically less than 50% of pro-
cessor ¢ycles involve memory referencing. To
approximately model the TI 9900 situation, it can
be assumed that there are on the order of one-
half of the processors accessing memory on any
cycle. Thus, the effective ratio of number of
memory modules over the number of processors in
the configuration model can be doubled.

Finally, a configuration is proposed which
is characterized by groups of time-phased pro-
cessors on common buses each of which is inter-
faced to a1l memory modules via multiport con-
trollers; relatively fast memories are proposed,

as is address interleaving. Figure 1 shows such
a configuration for which processors within a
group will never contend with each other and the
other methods reduce interference between groups
to an insignificant level.

Multitasking Overhead Characterization

The ratio, , of average application program
execution time over control program execution time
was found to be a very significant parameter in
throughput considerations. Reference 3 derives
the Timiting throughput performance formula for a
multiprocessor as T=p (1 - pc) where Pe is the

probability of memory contention on any memory
access. Thus, the limiting throughput for con-
gruent rectangular multiprocessor systems is in-
dependent of the number of processors. Adding
more processors results in increasingly diminish-
ing returns. In Figure 8 a family of throughput
curves are presented representing different values
of p with memory contention assumed to be zero in
each case.” Detail design data on the System Con-
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troller has been obtained which indicates that an
average entry/exit transition overhead associated
with a single application program task can be
reduced using state of the art component techno-
logy to something on the order of one microsecond.
This constitutes several orders of magnitude over-
head reduction when compared with current software
executive approaches. This means that even when

a very low activation level of software is address-

ed (i.e., very short average program execution
time) a large value of P can be expected when

microprocessors are involved. The importance

of this is amplified by processor utilization

considerations.

Processor Utilization

The amount of parallelism available in typi-

cal programs has been investigated by Kuck]4. The
result of this investigation has shown that the
average number of possible parallel paths in a
program is linearly related to the size of the
program rather than related as the order of Tlog

of the size as was formerly thought to be the
case. This conclusion is encouraging relative to
using arrays of microprocessors to obtain signifi-
cant throughput capability. But to exploit this
amount of parallelism requires allocation of in-
dividual program tasks to processors at a very
low level (even below the HOL statement level in
some cases). This then becomes a very stringent
requirement on the overhead associated with the
coordination of parallel processes. This require-
ment has been met by the low overhead System Con-
troller.

Microprocessor Firmware

The unique computer architecture described
previously requires unique capabilities in the
microprocessor firmware in several areas:

Special Macro Instructions

The particular System Controller interface
requirements suggest bit assignment capabilities
based upon the results of logical operators such
as greater than, equal, etc. This will accommodate
the dynamic condition assignments such as:

D(i) = a > b.

The assignment of processor activities from
the System Controller is effected by loading task
interface registers in the processor with read,
write and execute descriptor values. Addressing
modes should therefore be microprogrammed to be
effected indirectly through these registers.

Interrupt Structure

The approach that is being pursued is to
connect interrupts directly to processors as in
conventional architectures. The System Control-
ler however will have a "row" in its constructs
assigned to interrupts. (Note that the null
program associated with the interrupt "row" will
be precluded from eligibility because of unrealiz-
able internally specified conditions.) The S

- - Ty

vector will have condition indicators associated
with specific interrupts whose values indicate
whether the interrupt has occurred. The inter-
rupt response processing routines can then be
treated as application programs whose eligibility
is based on the status of these indicators.

when an interrupt occurs, the processor will
first save the current processor state (program
counter, processor status word, etc.) so on com-
pletion of the interrupt handling, the processor
can return to the previous task. After saving
the processor state it will wait until the System
Controller is ready to service a request, save
the current values of the task interface registers
and overstore them with values appropriate to the
System Controller interrupt row. The (micropro-
grammed) interrupt procedure in the processor will
then load values associated with the specific
interrupt into the D register, and initiate an
exit transition. This exit transition causes the
condition indicators in the S vector associated
with the interrupt to be set appropriately. The
procedure will then wait until the exit transition
has been completed by the System Controller. The
processor will then restore the interrupted task
interface registers, restore the previous pro-
cessor state and return to the interrupted activ-
ity. The entire procedure is shown in Figure 9.
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Figure 9: Interrupt Processing Operational Flow

This entire sequence is completely transparent to
the interrupted program. As the result of these
operations, whatever actions are appropriate in
response to the interrupt will be determined eli-
gible by the System Controller when the next pro-
cessor makes a request for an activity.
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Conclusions

Analyses indicate that with the approach to
multi-microprocessing essential to Transition
Machine architectures, a linear increase in pro-
cessing capability can be realized as system size
is increased up to about 100 processors. This
projection applies to highly parallel system appli-
cations using a single control device. Multiple
control devices could be used to increase effici-
ency if more processors were required for an

application.” An eight processor, four memory
module, single System Controller prototype system
is currently being developed to demonstrate
feasibility.

The use of the system control constructs in
a top-down software design hierarchy is currently
under investigation. The operating system con-
cepts involved in the manipulation of these matrix
overlays and main memory program/data allocation
is also under investigation. Some of the con-
cepts being considered are discussed in reference
4.

In actuality of course, practical hardware
considerations come into play before 100 parallel
processors would be obtainable. These may impose
more sever limitations. These considerations in-
volve such problems as pin-out which could none-

the-less be addressed by LSI implementations.'’
In effect, by virtually eliminating the multi-
tasking and memory contention overhead, the em-
phasis in cost reduction for extremely large
throughput computers obtained by multiprocessing
many smaller computers must now shift. The em-
phasis must now be focused on the physical char-
acteristics of the components from which these
systems are implemented and the software develop-
ment support tools.
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