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Abstract -- The architecture for a general
purpose parallel computer called a Parallel Tran-
sition Machine is derived from an abstract theo-
retical model of parallel computation. Its devel-
opment is pursued to a design description involv-
ing hardware block diagrams. Applicability across
a broad spectrum of computational requirements is
suggested by the modular extendability of the
hardware units. It is apparent that computational
problems can be broken down in a design hierarchy
where each level executes in a virtual Transition
Machine dynamically assignable to a free hardware
unit.

Introduction

There are completely general models of paral-
lel computation [8], but there are currently no
machine architectures suitable for efficient exe-
cution of parallel programs generated in accord-
ance with one of these models. The parallel com-
puter architectures which do exist are special
purpose devices appropriate only within a re-
stricted domain of any general parallel computa-
tional model. For example, the restricted homo~-
geneous parallelism afforded by an associative
or an array processor can only perform identical
operations on multiple data sets concurrently.

This paper describes a family of computa-
tional machine architectures which implements a
general model of parallelism. The conceptual
model of parallel computation described by
Keller [8] under the nomenclature of tranmsition
systems has been accepted here as the basis for a
more detailed model of a machine architecture.
This Parallel Transition Machine model provides
a machine architecture in which transition systems
can be executed. The details of this architecture
are defined to a level where development can pro-
ceed. A prototype system is currently under de-
velopment; some of the detail design issues ad-
dressed by this development are discussed in
reference [3].

The architecture can be characterized as a
multiprocessor with a separate System Controller
as shown in Figure 1. Interrupts, 1/0 control-

e 17e e
prvicd pevic pevicd
0 1 2
. | S|
ittt — . —L
PRecLsson PROCCIsON "L - raotitsen |*0
—9 - T —1 + 4
[ T =
wnony :::IJ =m noR e
FIGURE 1: PARALLEL TRANSITION MACHINE
" ————— -

B ] L S S

98124

lers, and other special purpose processors can be
integrated into this model of Transition Machines,
and introduce no significant developmental pro-
blems. The System Controller is in essence a
functional equivalent (implemented in hardware)

of a multiprocessor executive for transition sys-
tems. The operation of the System Controller is
effected by a series of logical operations on
fixed data constructs descriptive of the condi-
tions under which the various computations become
eligible. It effects the system transitions by
performing matrix operations on a system status
vector to obtain a procedure eligibility vector.
The procedure eligibility vector provides a basis
for task assignments to the processors; completion
of the assignments results in a modified system
status vector.

The development cost of System Controllers
is small relative to the cost of the multiproc-
essors which are controlled by them. System tran-
sitions can be effected in a fraction of the time
that is currently required for straightforward
software multiprogramming executives. This sup-
ports an approximately linear extendibility of
throughput in large array multiprocessors. To
implement the equivalent system control matrix
operations in a software multiprocessing executive
would be infeasible due to the high overhead as
shown in reference [3].

The application of Parallel Transition Ma-
chines to large systems is extremely promising,
and the feasibility of configuring arrays of
coordinated microprocessors seems evident [14].
But large systems introduce commensurate chal-
lenges; for example, an operating system and link-
age editor of considerable complexity are required
to implement the overlaying of partitioned matrices.

Parallel Transition Machines also require
programming structures which are not traditional.
These non-traditional structures provide the ad-
vantages of highly structured programs which re-
sult in enhanced software productivity [1]. It
is possible, however, to develop only the trans-
lator for a suitable existing compiler so that
traditional program structures could be trans-
lated to run on Parallel Transition Machines.

Abstract Parallel Computation Model

Parallel Transition Machines are based on a
particular abstract model of parallel computation,
selected because of its generality. It is tran-
sition systems (Q,*), where Q is the set of pos-
sible system states and *+ is the set of transi-
tions between states as described by Keller. A
named transition system is a triple (Q, =+, I).

The components correspond respectively to the set
of possible system states (ql. 9 qa...). a set

of transitions between states (*1. *go *3...),
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and a set of names (01, 02. 03...) associated with

groups of individually programmed transitions be-
tween states [8]. Since there is a one-to-one
correspondence between the indices on sigma and
the names themselves, the indices will be used to
indicate the names: 1 implies 0, and I = {1}

implies I. The index i € I is associated with a
group of system transitions described by the
statement:

when Ri(E) do £' = Q&(E)

The
follows:

symbols in this statement are defined as

i = the index of the group of transitions
whose common feature is that they all
result in the data transformation in-

dicated by the function ‘4‘1'
the set of all data items in the system.

the subset of satisfied propositions
on the data set, £ which are essential
to defining the appropriateness, and
therefore constitute the enabling pre-
dicate, for transitioning as determined
by performing the data transformation

HGE

the programmed functional data trans-
formation, associated with the group
of system transitions indicated by i,
which operates on the data set, £ and
results in a revised data set £'.

R;(€) =

Y@ =

The group 7 can be associated with a proce-
dure (including preamble) that can be written by
a programmer to effect the data transformation,
wi on the data set £ when the appropriate set of

conditions Ri is satisfied on that data set.

(Although obviously not the intent in Keller's
work, it has been demonstrated that program
requirements can be implemented to advantage in
this manner [1].) In a parallel computation step,
multiple sets of conditions, Ri can be satisfied

simultaneously such that multiple transitions can
proceed in parallel. The Ri are enabling predi-

cates that indicate the requisite status of pro-
positions on the data set £ which properly enable
the function u&. Relevant propositions that have

been defined on data elements ekeE are the follow-
ing:
1. the data element e, is available/not

available for use in subsequent computations,

2. the data element € satisfies/does-not

satisfy a specified condition relative to some
constant or other data element U (for example,

¢ < ek.). and

3. the data element € can/cannot be updated.
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This paper deals exclusively with valid par-
allel programs; these programs will not exhibit
race conditions, and therefore procedures which
read and write the same data element will have a
predetermined execution order specified by their
respective enabling predicates. The properties of
determinacy, commutativity and persistence are
described by Keller [9]. These and other proper-
ties of valid parallel programs are also discussed
in references [5], [6], [8], and [11].

Transition Machine Model

As an organizational basis for implementing
the architectural model of parallel computation,
we have defined a set of constructs and the logical
matrix operations on these constructs which effect
the system control functions for a Parallel Tran-
sition Machine. The constructs and logic are ex-
emplified in Figure 2.
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Definition 1. The system status vector, S is
a set of binary status indications for a set of
propositions concerning the data set £ such that
for every possible proposition on the set there is
an associated status indication, SJ in S if and

only if the proposition on the data set is relevant
to enabling some procedure in the system. (In
hierarchical implementations discussed further on,
conditions which are relevant to every procedure

at a given level will also be excluded.) SJ =1

if the associated proposition on the data set is
met, Sj = (0 otherwise.

For convenience we will use the phrase "data
condition" in referring to a "proposition on the
data set" throughout the remainder of this paper.

Definition 2. The system eligibility vector,
E is a set of binary status indications for the
set of predicates Ri’ such that for each predicate

Ri there is an associated status indication, Ei
in E indicating whether Ri is currently satisfied,
Ei = 1 indi-

cates the associated predicate is satisfied;
Ei = 0 otherwise.

enabling the associated procedure.



Definition 3.
with Sj is relevant to enabling procedure i if and

A data condition associated

only if the data condition whose status is indi-
cated by Sj is included in the predicate R..
1

Proposition 1. The predicate, R; can be rep-
resented as a set of binary relevance indications
associated (and in conjunction) with each of the
data conditions whose status is maintained in S.
This proposition follows directly from the pre-
vious definitions.

Definition 4. The relevance matrix, R is
comprised of binary relevance indications, r1j

indicating the relevance of a data condition j to
enabling procedure i. Relevance is indicated by
tij = 0, irrelevance by rij =1,

Definition 5. The logical dot product, of a
matrix M (with dimension IxJ) and a vector, W
(a vector of dimension J) is defined as the vector,
P = M'W, with dimension I, where

J

P, =
i jel Hij' Hj

In this equation (and throughout this paper)
the following symbol definitions apply:

N
2

X_ S X A X A -
1 1

AX .
n 2 n

logical "AND",
logical "OR".

Proposition 2. The system eligibility vector,
E can be computed appropriate to a given state of
the system by generating the logical data product
of the relevance matrix, R and the system status
vector, S.

Proof:

From definition 5 is follows that:

J
[tvs]1 = j{\l Ty v S

From definitions 4 and 1 it follows that

rij v Sj = 1 if and only if data condition j is
either met or irrelevant to enabling procedure i.
Then by proposition 1 it follows that [R'S "R 1

if and only if all data conditions of the predi-

cate li are satisfied. Thus, [R'S]1 = Ei by

definition 2, and it is proved that E = RS as
proposed.

There is now a prescription for determining
procedure eligibilities based on system status and
the procedures' data conditional requirements.
What remains to be shown is the computation of the
new system status vector appropriate to having
completed a given procedure.
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System Status Update

Since Keller did not address actual imple-
mentations of named transition systems, it was not
incumbent upon his work to address representation
and the associated maintenance of state. In this
paper however, we posit that there are J data con-
ditions (propositions concerning the data set)
whose status (true or false) will provide suffi-
cient information concerning the state of the sys-
tem to effect any and all of the named transitions
defined for the system. But the status indications
for these data conditions maintained in the S vec-
tor are not a part of the data set £ associated
with the transformations Uﬁ(ﬁ). Therefore, they

must be updated separately in order that changes
of state be reflected in the system status vector.

There are several possible implications on
the status of a data condition at the completion
of a procedure which implements the data trans-
formation. They are as follows:

1. The data condition's status remains un-
affected by the procedure running to completion.

2. The data condition's status is satisfied
whenever the procedure runs to completion.

3. The data condition's status is negated
whenever the procedure runs to completion.

4. The data condition's status is determined
dynamically during the execution of the procedure.

The fixed constructs which are implemented to
effect system status modifications are described
below:

Definition 6.

The jth element, t of the

ij

true condition vector, 11 is a binary status in-

dication associated with procedure i and the
data condition, j such that tU = 1 implies the

data condition j is either satisfied or unchanged
by the completion of procedure i.
Definition 7.

The jth element, f , of the

ij

false condition vector, F, is a binary status in-

i
dication associated with the procedure i and the

data condition, j. The element flj = 1 implies
the data condition j is either negated or unchanged
by the completion of procedure i.

Definition 8. The variable condition update
vector, V is a set of binary status indications
which can be set dynamically by a procedure run-
ning in a sequential processor. The component V

]
is set to 1 by the procedure to indicate that data

condition j is satisfied or VJ is set to 0 to in-

dicate data condition j is not satisfied. For
elements in S that are not to be dynamically up-
dated, the associated element in the V vector can
be set to either 0 or 1.




Proposition 3. The four possible implications
on change in system status following completion of
procedure i can be computed according to the for-
mula:

snev = (Sol‘d Ti) v (Tl . Fi) v (FIA vi)

where the bar indicates the logical NOT operation.

Proof: The proof follows directly from the
definitions of the associated vectors as shown in

Table I.

TABLE 1 SYSTEM STATUS UPDATE POSSIBILITIES
S Rl ey
1 1 stLD unchanged
1 0 1 set true
0 1 0 set false
0 0 Vj set variably

It should be noted that there are many forms
which definitions 6 through 8 and proposition 3
could have taken. The expression which we have
used has the advantage of restricting the range of
V such that a procedure can dynamically modify
only conditions for which it is authorized.

Proposition 4. The rangeof V is restricted
such that V can modify only a specific subset of
the data conditions, j. This subset is determined
by 'r1 and ?1 for procedure i such that S is deter-

mined by V, if and only if tij = 0 and fu = 0.

b
Proof: The implied new values of SJ for the

various values of tij and fij from proposition 3

are shown in Table I from which the proposition
follows directly.

It should be noted that there are also implied
modifications to system status at entry to a pro-
cedure; these modifications are to prohibit the
same transition from being attempted in other proc-
essors by denying subsequent update access to
relevant portions of £ when £' = Y.(£) has been
initiated. »

In order to accommodate exclusive data access,
another construct must be added to negate avail-
ability of data which is to be updated by a cur-
rently activated procedure. The update is required
to insure that read/write conflicts do not arise
between procedures whose execution is not "indi-
visible". A discussion of the concept and defini-
tion of indivisibility can be found in references
[9) and [11). To implement this update, a vector
‘1 has been defined which 1s associated with each

procedure, i to specify the status update implied
on entry to that procedure.

Definition 9. The vector Ai is a set of bi-
nary status conditions 115. where the index j is

79

associated with the data conditions whose status

is maintained in S. a1J = 1 if and only if the

jth data condition is a mutually exclusive data
availability condition required at entry to pro-
cedure 1; ‘1] = 0 otherwise.

Proposition 5. Modifying the system status
A

vector according to the formula SNEH = SOLD‘ i
prior to entry is sufficient to effect contempor-
aneous access protection for procedure i.

The proof of this proposition follows immedi-
ately from definitions 1, 4 and 9 and proposition
2 if there are no procedures activated prior to
activating procedure i which are affected by or
affect these mutually exclusive data availability .
conditions. If such procedures are currently
active, procedure i would not have become eligible. A
(Refer to Keller [9] for definitions of commuta-
tivity and persistence as they relate to valid
parallel programs.)

Proposition 6. If Xi is identical to the

ith row in R for all i, then all procedures with
any entry conditions in common must execute se-
quentially.

The proof of this proposition follows as a
special case of proposition 5.

Modifying the system status

NEW - SOLD v Ai

Proposition 7.
vector according to the formula §

restores S to its original value.

Proof: The proof of this proposition follows
directly from definition 9 and proposition 5 if
there are no changes to S between entry and exit
of the ith procedure. When there are other pro-
cedures initiated or terminated in the interval,
the proof holds because no procedures can proceed
in parallel if they are affected by or affect the
same data availability condition covered by Ai'

(Refer to Keller [9] for definitions of commuta-
tivity and persistence.) Therefore, for every
condition for which .ij = 0 there will have been

no intermediate change to S, and the proof is
completed. 3

Proposition 8. The change in system status
following completion of procedure i can be com-
puted according to the formula:

Syew = (Gop¥ ADAT) v (T A 'fi) v (fiA v)

The proof follows directly from the proofs
of propositions 3 and 7.

It has been shown in reference [14] that
interrupts can be integrated into the model in a
near conventional manner. Externally activated
procedures are defined for them which can never
become eligible based upon their l1 vector, but

which have an associated system status update
identical to internally activated procedures, when



they exit. This updated system status will then
activate appropriate interrupt processing pro-
cedures.

Procedure Activation

The emphasis of the preceding definitions and
propositions has been to create a basis for deter-
mining the eligibility of the individual data
transformations which comprise the computation, as
well as to maintain a current system status vector.
In effect we have a sufficient basis for the deter-
mination of the "When RI(E)"' This does not how-

ever include a sufficient basis for the activation
of the data transformations, i.e., the "DO £' =
ﬂ)i(E)". As a basis for this activation procedure,

it will suffice to maintain a triple of descriptors
for each procedure (READi, HRITEi and EXECUTEi) in

the System Controller. These descriptors desig-
nate respectively the elements of the data base, £
which are to be read, the elements of the data
base, £' which are to be written, and the starting
address of the executable procedure, Wi which

implements the data transformation. The appro-
priate descriptor triple can be transferred to
the interface registers to effect activation of the
procedure in the requesting processor as shown

in Figure 2.

The addressing structure of the application
programs which implement the transformations is
shown in Figure 3. The EXECUTE register value

READ DATA

FIGURE 3: APPLICATION PROGRAM ADDRESSING
STRUCTURE

transferred to the processor when the procedure is
activated specifies the initial program counter
value to be used. Data accesses by the program
must be implemented with displacements relative
to pointer packets whose starting addresses are
indicated by either the READ or WRITE descriptor
register value. This displacement specifies a
particular descriptor value which in turn points
to the data item being referenced. This scheme
accommodates unique arguments to re-enterable
programs as well as providing a basis for con-

tainment in multilevel secure systems [15].

Processor Type Accommodations

The architecture model has been extended to
include heterogeneous processor types. This is
effected by maintaining a processor type designa-
tion for each procedure, TYPEi. The procedure

eligibility determination includes an evaluation
of the equivalence between the type of the re-
questing processor and the type designation of the
eligible procedure. Thus, if the defined proce-
dure requires an I/0 activity, an 1/0 controller
would be specified as a requirement for the pro-
cedure. Having incorporated this approach into
the model allows procedures to specify a special
processor type such as floating point processors,
vector instruction set processor, byte or word
oriented processor, or just a specific processor
model if several are multiprocessed in the same
configuration, .

The data construct, TYPE in Figure 2 is de-
fined to accommodate this capability. In addition,
each processor must have its own type identifi-
cation available to the eligibility determining
logic in the interface registers.

System Controller Hardware Organization

The System Controller is the device that is
designed to contain the fixed data constructs for
each procedure, performs the logic to determine
procedure eligibility and system status updates,
and assigns activities to processors. The device
described in this section is a specific design
based on the architecture model which has just
been described. This design is applicable to
either single or multiple processor systems.
Figure 4 is a functional block diagram of this
device. The content and function of the major
blocks in the diagram are described below:
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FICURE 4: FUNCTIONAL BLOCK DIAGRAM OF THE

SYSTEM CONTROLLER
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Processor/System Controller Interface

The interface block contains all data and
control registers accessible to the processors,

The structure and use of these registers are as
follows:

STATUS a 3-bit read/write register whose bits
are labeled P/P, B, and X, and which con-
tain the following synchronization, pro-
tocol and mode request information.

P/P 1is a 1-bit binary semaphore used to pre-

vent multiple processors from accessing
the System Controller interface registers
simultaneously. The P/P semaphore is set
when a processor is accessing the System
Controller and it is reset when no proc-
essor is currently accessing the System
Controller.

B 1is used to prevent the processors from
accessing the System Controller while it
is busy servicing a request. When a proc-
essor makes a request to the System Con-
troller, it waits until B is reset, sets
X to the appropriate value, and sets B
true. This activates the System Control-
ler which resets B when the request has
been serviced.

X 1is used to notify the System Controller
of the type of service being requested.
X is set (true) by the processors when
the service requested is the result of a
procedure exiting and it is reset when
an activity is requested. X is only
required in multiple processor imple-
mentations.
TYPE is a register used to contain the proc-
essor type identification. The System
Controller uses this register to deter-
mine the next eligible procedure whose
identification is to be loaded into
INDEX. TYPE contains the processor cate-
gory appropriate to the processor making
the request. The System Controller re-
turns the index of the next eligible
procedure, whose type matches the value
in the TYPE register.
INDEX is a register used to contain the identi-
fication of either the assigned procedure
or the procedure currently being exited.
As the fulfillment of processor activity
requests, the System Controller loads
INDEX with the index of the next eligible
procedure whose type matches the value
contained in the TYPE register, or INDEX
is loaded with a 0 if no procedures of
the appropriate processor type are eli-
gible. When a procedure exits, the Sys-
tem Controller assumes INDEX contains
the associated procedure index.
EXECUTE contains the entry point of the procedure
whose index is contained in INDEX. (Refer
to Figure 3.) EXECUTE is loaded by the
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System Controller as the result of the
activity request. EXECUTE is unused
when an exit is requested.
READ contains an indirect pointer to the glo-
bal data item(s) accessible to the associ-
ated procedure in a read capacity. (Refer
to Figure 3.) READ is loaded by the Sys-
tem Controller as the result of the ac-
tivity request. READ is unused when an
exit is requested.
WRITE contains an indirect pointer to the global
data item(s) accessible to the associated
procedure in a write capacity. (Refer to
Figure 3.) WRITE is loaded by the System
Controller as the result of the activity
request. WRITE is unused when an exit
is requested.

V contains the variable status update vec-
tor loaded by the processors upon exit
from a procedure. This vector allows a
procedure to return variable data con-
dition status to the system status vector.
Notice that his allows the task to modify
only selected data elements since any
attempt to modify unauthorized data will
be masked out by the T and F vectors,
stored internally to the System Controller.

By allowing the processors to access only the
data and status registers defined above, all
system control logic is localized to the System
Controller. This also prevents the processors
from accessing unauthorized programs, data, or
control information, providing a natural basis
for implementing secure systems. The security
aspects of Transition Machines are discussed in
reference [15].

Data Constructs

The data block is comprised of memory modules
which contain the data structures required to
control the system transitions, as shown in
Figure 2. These include the EXECUTE, READ, WRITE,
and TYPE arrays and the T,F,A, and R matrices as
defined previously., The data block receives one
input, the data select bus which addresses each
of the EXECUTE, READ, WRITE, TYPE, T,F,R, and A
constructs concurrently, causing the element
indexed in each of these memories to be output on
its associated data bus.

It is assumed that there is a load capability
which will allow the programmer to change the
content of these memory modules. The content must
necessarily change during program development or
in real-time in large systems where the matrices
will be overlayed dynamically during the execution
of the system (analogous to overlaying the task
control blocks by a conventional operating system).
For dedicated special purpose applications, how-
ever, these constructs could be fixed and put into
read-only memory. The load procedures are system-
dependent and are therefore not a subject of this
paper. An implementation applicable to large
general-purpose systems is discussed further on



and is the subject of continuing research.
sizing of these memory modules is addressed
further on in this paper also.

The

Fixed Transition Logic

The fixed transition logic block contains
the combinational logic necessary to update the
system status vector and to determine procedure
eligibility. This block requires the T,F,V, and
A vectors for the procedure currently being
assigned or exited in order to generate the new
system status vector, S. The logic expression
for the new S vector generated as the result of
either an activation or procedure exit request-
are shown in Figure 5. This diagram uses the
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FIGURE 5: SYSTEM STATUS UPDATE LOGIC

convention defined in Figure 6 of using a "/" on
a line to indicate multiple lines treated identi-
cally.

Tofo 4181 423,
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FIGURE 6: TREATMENT OF MULTIPLE LINE GATE INPUTS

The combinational logic also combines the
current S vector with successive rows from the R
matrix and compares the successive elements of
the type array with the TYPE register to deter-
mine the eligibility of each procedure. A single
output bit, E1 is provided as an input to the

synchronization and control logic.
obtain Ei is shown in Figure 7.

The logic to
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PROCEDURE ELIGIBILITY DETERMINATION
LOGIC

FIGURE 7:

The System Controller design described here
assumes the eligibility vector (E) is computed
one element at a time. This need not be the case.
An associative memory can be used to generate the
entire E vector in parallel which will result in
much faster transition speeds but requires more
hardware support.

Synchronization and Control Logic

The synchronization and control logic syn-
chronizes the operation of all the components of
the System Controller. The control logic operates
as shown in Figure 8. The System Controller waits

FIGURE 8: SYNCHRONIZATION AND CONTROL LOGIC

in an idle state until its execution is initiated
by a processor request (i.e., B set). If X is
set, the System Controller initiates a system
status update and if X is not set, a procedure
eligibility determination and assignment is
initiated.



When a procedure exit request is initiated,
the non-zero procedure index provided by the proc-
essor is used as the address selection value on

the data select bus. This in turn causes the ap-
propriate array elements to be output on each of
the memory data buses. The fixed transition logic
then updates the system status vector to effect
the update implied by the procedure exit. The B
indicator in the STATUS register is then reset to
indicate the request has been serviced.

The procedure activation request causes suc-
cessive rows of the R matrix and the TYPE array to
be output on their respective data buses. As each
row is output, the fixed transition logic generates
the next element of E. INDEX is loaded with either
the procedure index for the first eligible proce-
dure or with a zero signifying that no procedure
is currently eligible. If INDEX is non-zero, the
EXECUTE, READ, and WRITE pointers associated with
the indexed procedure are transferred to their
respective interface registers. The fixed tran-
sition logic then generates the new S vector ap-
propriate to the protection of the assigned pro-
cedure. At this point, a complete entry transition
has been effected. The System Controller busy
indicator, B is then reset to allow the processors
access to the interface registers again.

The detailed processor logic and System Con-
troller interface and internal logic are provided
in the syntactical expressions of Figure 9 and 10.
These figures have didactic value as indicative of
a source language structure applicable to appli-
cation programs to be run on Transition Machines.

Performance Characteristics

A throughput performance model was developed
which predicted the throughput capabilities of
parallel transition Machines [13]). This model was
made general enough to include multiprocessors with
software executive control mechanisms. The three
major contributions to system overhead that were
examined are memory contention, the overhead as-
sociated with the central control mechanism, and
control mechanism lockout experienced while waiting
for a request to be serviced. Memory contention
contributions were assumed to arise even from proc-
essors which are determining their next application
program assignment (i.e., currently executing the
executive program in the case of a conventional
system or waiting for the System Controller to
service the outstanding procedure entry request
in Transition Machines). Since Parallel Transition
Machines can be designed to be exempt from this
contribution to memory contention, measured per-
formance should be better than predicted by the
model in this regard.

The significant performance parameter was
shown to be P = A/@, where @ is the characteristic
System Controller overhead per application proce-
dure (eligibility determination and system status
update), and A is the characteristic application
procedure execution time requirement. The value
of p determines the number of processors that

can be effectively combined in a tightly coupled
mode of operation as described in the reference.
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When Exit false (Entry)
When test and set of P/P semaphore true
When B false (System Controller not busy)
Begin: Assignment Processing
Store TYPE
Store X false (entry)
Set B true (activate System Controller)
When B false (System Controller not busy)
If INDEX#0 then
Load INDEX
Load READ
Load WRITE
Load EXECUTE
Clear P/P semaphore
Transfer Control to EXECUTE
Set Exit true
Else
Clear P/P semaphore
End: Assignment Processing
When Exit true
When test and set of P/P semaphore true
When B false (System Controller not busy)
Begfn: Exit Processing )
Store INDEX
Store V
Set X true (exit)
Set B true (activate System Controller)
Set Exit false
Clear P/P semaphore
End: Exit Processing

FIGURE 9: PROCESSOR CONTROL LOGIC
When B true
Begin: System Controller logic
If X true (exit) then
{ = INDEX
s.[w . ((SG.D v A‘)A Ti) v (rlA V) v (TAF'))
Else (entry)
Clear {
While [1 =0 and i<l

lncrasm i
B e ) By v g h e o o)

184 E; = 0 then

INDEX = 0

Else

INDEX = 1§

READ = READ,
WRITE = WRITE,
EXECUTE = E)(ECUI’E1

Snew * (Sorp A Ky)
Set B false
End: System Controller Logic

FIGURE 10: SYSTEM CONTROLLER LOGIC

The overhead, @ is very dependent upon the
component technology used in the development of
the System Controller, A is dependent upon the
speed of the individual processors. Current com-
ponent technology will support @ < 1 microsecond.
With microprocessors, A > 100 microseconds is very
conservative. This yields P = 100, which indicates
according to the model that on the order of 100
microprocessors could be combined in a tightly
coupled mode of operation controlled by a single
System Controller with a proportionate throughput
capability.

Lockout is the primary reason for the flat-
tening of the throughput curve as a function of




the number of processors.
in Parallel Transition Machines, multiple system
Controllers (including separate interface registers)
can be incorporated so that if a processor is locked
out of one System Controller it can attempt to

To avoid this problem

acquire another, etc. Thus, in a batch type system,
many disjoint computations could be running con-
temporaneously across all processors.

A given computation will be characterized
by some maximum and average numbers of concurrent
execution paths. (See for example Kuck [10].)
The average concurrency will determine the proc-
essor utilization realizable during the execution
of a given computation. Thus, in general where
many processors are included in a configuration,
there is a requirement for concurrency of active
computations in order to achieve efficient utili-
zation of processors. This applies particularly
where a large system is being used for many small
computations.

The upper limit on throughput in Parallel
Transition Machines is thus determined by other
than system control considerations. Physical
module interconnection schemes now become the
limiting factors. High speed buses and processor/
memory groupings [12] are likely approaches to
extending these limits.

System Controller Memory Sizing

In what has been presented so far, there has
been the implicit assumption that all of the con-
structs associated with relevant data conditions
and programmed procedures for an entire system can
be accommodated in the data constructs memory
modules in the System Controller. In a prototype
system currently in the development stages, these
constructs are contained in a single module and
are allocated dimensions of 32 conditions by 32
procedures. Analytic studies and simulations have
indicated that as a rule of thumb there are one
and one-half times as many conditions required to
control a tightly coupled network of procedures
as the number of procedures involved. This would
indicate that optimum memory utilization would be
more probable for System Controllers characterized
by such dimensional ratios.

' How large these memories should be made to
support general applications is a key issue.

There is no real problem in sizing these arbitrarily
large, but application systems have a way of out~-
growing single physical modules. Methods have
therefore been investigated which extend the logi-
cal capacity of the System Controller in modular
incremental units to justify the development of a
standard System Controller applicable across a

broad spectrum of system sizes,

The most direct method of extending capacity
is to directly increase the dimensions of the mem-
ory in the System Controller. The design described
in the previous section can be expanded to accom-
modate more data conditions (i.e., horizontal ex-
pansion of the arrays) or more procedures (i.e.,
vertical expansion of the arrays) by cascading
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multiple sets of the standard component blocks
which are then connected to a common processor/
System Controller interface. This facilitates the
construction of an arbitrarily large System Con-
troller by the interconnection of many standard
System Controller components each of fixed size.
This cascading of component System Controllers is
shown in Figure 11 for horizontal expansion. A
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FIGURE 11: MODULAR HORIZONTAL EXPANSION OF THE

SYSTEM CONTROLLER

similar approach is applicable to vertical expan-
sion, where a master System Controller is used to
multiplex between vertical segments, each of which
is controlled by its own System Controller. These
methods of modular expansion do not increase worst
case transition times and can be applied in a
structured physical hierarchy.

Virtual Transition Machines

Memory size problems are not new to computing,
and the resolution of former problems encountered
with insufficient main memory can be applied di-
rectly to the System Controller memories. The
concept of virtual memory and commensurable virtual



machines is particularly germain to Transition
Machines. The segmentation and paging of the data
constructs required by Transition Machines can be
an integral part of a hierarchical application
program design approach. The approach encompasses
the design and implementation of systems as a com-
plete transition system at each level in a hier-
archy. This approach incorporates the capability
of associating an indentured R matrix with a row

in a higher level matrix. Conditions appropriate
to each matrix level include only those which are
relevant to the procedures (or immediate further
indentured matrices) at this level. This top-down
recursion can proceed in the extreme all the way
down to where the procedures become the instruction
set of processors or even indivisible operators.
This instruction set can then be restricted to
exclude branching type instructions. In fact, even
going up one level, the Parallel Transition Machines
can be used to implement a completely general sys-
tem in conventional processors without requiring a
branch type (GOTO) instruction in the application
domain of the processors. The implications to

software productivity are discussed in reference [1].

To implement the logical extension of the data
constructs by partitioning the R, T, F and A mat-
rices, additional data constructs and algorithms
will be required to effect the dynamic real-time
loading and overlaying of procedures. The required
constructs are the following:

1. System Controller identification
2. Relevance matrix identification

3. Indication of whether a procedures or an
indentured matrix is associated with each row in
an R matrix.

4, Controller active indication for each
System Controller

5. Logical parent identification (relevance
matrix identification of parent)

6. Physical parent identification (System
Controller identification of parent)

These data constructs are felt to be suffici-
ent to implement a global operating system which
results in a virtual implementation of the total
system relevance matrix. Such an operating system
is the subject of current and anticipated future
research.

Conclusions

It has been demonstrated that even though there
are no completely general parallel computation ar-
chitectures commercially available, such computers
are nonetheless realizable. Parallel Transition
Machines which meet these specifications are de-
fined to a level where credibility 1s established.

A prototype of such a machine is currently in the
developmental stages at the Boeing Aerospace Com-
pany. A design has been presented in this paper
which is extremely flexible to meeting a wide range
of implementation variations. Such machines appear
to have considerable advantages over current machine
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architectures in several areas. These area include:
Multiprocessing throughput, software productivity,
and ADP security.

It is left to the future to develop the com-
pilers, linkage editors and overlaying operating
systems appropriate to the application of such
computers.
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