A PROTOTYPE PARALLEL COMPUTER ARCHITECTURE FOR
ADVANCED AVIONICS APPLICATIONS

Mark S. Anastas and Russell F. Vaughan

The Boeing Aerospace Company
P.O. Box 3999, Seattle, Wa. 98124

ABSTRACT

The availability of inexpensive, low
power, light weight, radiation hardened,
single-chip microprocessors makes the
development of tightly coupled
multi-microprocessor avionics feasible from
the stand point of component cost. Such
systems have significant advantages over
conventional single processor approaches
for many aerospace applications. The
advantages include the ability to use a
plurality of low technology devices to
obtain high throughput, fault tolerance and
modular expandability.

There have been, however, a number of
technical problems that had to be solved in
order to make such systems effective. A
research activity was initiated at the
Boeina Aerospace Company to address these
problems. This has resulted in a new
parallel computer architecture called
Parallel Transition Machines [3,11].
Computers characterized by this
architecture are easily programmed [2,9]
and extensible to large numbers of tightly
coupled processors. This paper describes
an eight processor prototype machine which
has verified the cost effectiveness of such
machines. This prototype design and its
performance characteristics are described
in this paper.

DEFINITION OF TRANSITION MACHINES

The Transition Machine architecture is
comprised of a conventional tightly coupled
multiprocessor whose operation is
controlled by an external device, the
System Controller (SC). The SC is a
Programmable device utilized to dispatch
activities to the processors. It is thus
similar in function to a mul tiprocessor
eéxecutive, but has the advantage of
extremely low overhead. The significance
Of this advantage is determined using a
Parameterized model of multiprocessor
::r?:g?put performance described in detail

The Transition Machine executes unique
Program structures. This non-von Neumann
Structure has been studied extensively as
an abstract conceptual model. This model
:f parallel computation is set forth by

eller in reference ([5]. The conceptual

model is "Named transition systems". It is
accepted as the basis for the architectural
model implemented in Transition Machines.
Named transition systems provide a model of
the run time structure of parallel computer
programs; it is a form into which any
"structured" proaram can be translated. An
example implementation of this automatic
conversion process is described_in a
companion paper [9]. The Transition
Machine provides a processing environment
in which transition systems can be directly
executed.

Computation Model Description

The transition system model is defined
as (Q, —), where Q is the set of possible
system states and — is the set of
transitions between states. A named
transition system is a triple (Q, —,).
The components correspond respectively to
the set of all possible system states (ql,
g2, g3...), a set of all transitions
between states (—1, —2, —3...), and a
set of names (Ol, 02, 03...) associated
with groups of individually programmed
transitions between states. Each of these
groups can be associated with the execution
of a single program, encompassing the
computer states that could be realized at
entry and exit to the program.

Execution of the proaram effects a
transition between states. Since there is
a one-to-one correspondence between the
indicies on sigma and the names themselves,
the indices can be used to indicate the
names: I is defined as the set {i} which
implies L. The index i € I is associated
with a group of system transitions
described by the statement:

WHEN Ri(d) DO @° = i (d)

The symbols in this statement are defined
as follows:

i, the index of the group of
transitions whose common feature is
that they all result in the data

transformation indicated by the
function, Wi,

d, the set of all data items in the
system,

i\\‘\\\“ SN

Ri (d), the subset of satisfied
propositions on the data set, d which
are essential to defining the
appropriateness of transitioning as
determined by performing the data
transformation ¥i(d), and

Yi(d), the programmed functional data
transformation associated with the
group of system transitions indicated
by i which operates on the data set, d
and results in a revised data set a“.

The set {i} represents program
segments (including the enabling predicate)
that can be written by a programmer (or
obtained by a translation from HOL source
programs([9]) to effect transformations Vi
on the data set d when the appropriate set
of conditions Ri is satisfied on that data
set. The Vi are the individual program
tasks which constitute a computer program.
In a parallel computation step, multiple
sets of conditions Ri may be satisfied
simultaneously such that multiple tasks can
be executed in parallel. The Ri are
enabling predicates that indicate the
requisite status of the data set which
properly enables the execution of the task
which performs the transformation, Vi.

Each of the enabling predicates Ri is
made up of a set {Rij}, j € J of unary
predicates where J is the total number of
unary predicates required by the entire
algorithm. A unary predicate may be
defined as a sinale proposition on the data
set and thus represents a single data
condition whose value may be specified in
or by a binary indication, e.g. true or
false. Propositions which are examples of
unary predicates on the data elements ej €
d are the following: 1) the data element
ej is available/not available for use in
subsequent computations, 2) the data
element ej satisfies/does-not-satisfy a
specified relation to some constant or
other data element ej (for example, ejl <
ej2), and 3) the data element ei can/cannot
be updated.

Architecture Requirements

The computation structure of this
conceptual model is logically divided into
two aspects, an execution control
specification (i.e. the WHEN statement)
and a computation specification (i.e. the
DO statement). The architectural
implementation of this model is analogously
comprised of two components as shown in
figure 1. The computation component is
comprised of a more or less conventional
memory/processor system. The control
component is a device unique to the
Transition Machine architecture, the
implementation of which is described
briefly further on and in more detail in
references [3,11].

There are three basic functions to be
Performed by the control mechanism which

® CONTROL ® COMPUTATION

DETERMINE THE ACTIVATION
STATUS OF PERFORM
SPECIFIED CONDITIONS BATA
TRANSFORMATION
||I||l"l"lllllll’ll"l“ll"l""ll COMPLETION
UPDATE SYSTEM STATUS

Figure 1: Transition Machine Architecture

are to: 1) determine the set of eligible
tasks, 2) dispatch the eligible tasks to
available processing elements, and 3)
update the state on completion of the task.
A set of data structures have been defined
which provides the information to support
these functions and which are particularly
amenable to implementation in hardware.

The eligibility of any particular

task, i can be determined by selecting the
subset of global unary predicates that are
pertinent to initiating execution of the
transformation d° = ¥i (d), and by
determining the status of those pertinent
unary predicates. Thus the control over
transitioning can be implemented by:

1. maintaining a variable system
status vector S whose components
are binary status indications, one
for each unary predicate in the
global set and

2. maintaining for each task, i a
relevance vector, Ri of fixed
indications for designating which
of the global set of unary
predicates are relevant for
enabling a particular program
task.

Once the sense of the indications in
Ri and S have been defined, there exists a
logical vector algebraic operation, "."
which can be defined such that Ei = Ri .
S, where Ei is a binary status indication
of the eligibility of the task, i. The set
of vectors, {Ri} can be arranged as a
matrix, R, the ith row of which is
equivalent to Ri. The vector algebraic
operation, "." can then be extended to
matrices such that:

E =R . S, where

E is a vector indicating the eligibility
status of every defined task in the system.

There is now a prescription for
jetermining task eligibilities (E vector)
based on the system status (S vector) and
the tasks” conditional data requirements (R
matrix). Once the task has been detected
as being eligible, it must be dispatched to
an available processing element. This can
be effected in a number of ways. The
approach taken here is to maintain three
access control descriptors for each task.
These three descriptors specify the data
items that can be read, the data items that
can be written and the execution bounds for
the code associated with the task.

The third and final requirement of the
control mechanism is to update the status
vector on completion of the task. There
are several possible implications on the
status of each data condition at the
completion of a task. They are as follows:
The data condition remains
unaffected by the task running to
completion;

2. The data condition is satisfied
whenever the task runs to
completion;

3. The data condition is not
satisfied whenever the task runs
to completion; and

4. The data condition is data
value-dependent, and is determined
dynamically by the execution of
the task.

The implications to system status at
completion of the task is readily
accommodated by three data constructs.
of these are fixed vectors (T and F)
together indicating which of the four
possible dispositions listed above is to be
realized for each data condition, completed
task pair. A third vector, V, is set
dynamically (4 above) by the task.based
upon the relationship of data variables
computed by the task. For example, the
task responsible for computing either of
the variables A or B would have to return
the status of the condition "A > B'_upon
completion. Execution of a task which is
responsible for computing the value of a
variable A would always result in the
condition "A available" being set true, and
would therefore not be required to return a
status value in V.

It is clear that the updated status
vector S can be computed as a function of
T, F, and V. The class of functions can be
restricted by overlapping the defined sense
of the fixed vectors T and F so as to
provide a mask against unauthorized dynamic
changes to S through the V vector.

It should be noted that there are also
implied modifications to the system status
at entry to a task; These modifications
prohibit the same transition from being
attempted in multiple processors by denying
subsequent update access to d” when the
transformation d° = Yi(d) is initiated. A
single vector construct (A), can be used to
implement this function. This vector is
used to reset a subset of the data
conditions required by the program task,
effectively disabling the task once it has
been activated.

Two

PROTOTYPE SYSTEM CONFIGURATION

In the taxonomy of parallel computer
architectures, the prototype system is a
multiple instruction multiple data (MIMD)
machine. A block diagram of the prototype

System is shown in figure 2. It
incorporates eight Texas Instruments SBP
9900 microprocessors, four four-ported

g 2y

: P i
1 3

Z v i
; .8

1 F 44

Eh =]

L=~ I"’E«TI'LL'“ I%EHL.,. I

Figure 2: Research Model Block Diagram

common memory modules, shared by all
processors and sixteen private memories.
The sixteen private memories are divided
into a 256 word RAM and a 4096 word FPROM
associated with each of the eight
processors. In addition, there is an RS
232 serial I/0 interface port, an external
real-time clock, and an Intecolor 8001
color graphics terminal.

There is additionally a single SC,
which provides hardware support for the
task dispatch executive control function.
The operations performed by the SC are as
described above.

Architectural Design Features

A number of design features have been
incorporated into this system to ensure
that the overhead associated with
coordinating the plurality of processing
units does not become excessive. There are
three sources of overhead that have been
addressed specifically by the hardware
configuration, memory contention, executive
control, and executive lockout.

Memory contention overhead has been
virtually eliminated in this system using a
combination of time-phased access, multiple
independent memory modules, multiple
independent address and data busses,

interleaved addressing, and high speed
memory-. The executive control and
executive lockout overhead contributions
are minimized via the use of high speed
logic in the programmable SC.

The prototype incorporates several
heral features in addition to the rack

i
g:rcgrds containing the actual prototype
hardware. This total configuration

includes support equipment which is not an
integral part of the operational
configuration, but has nonetheless been
essential in the development of the system.

support Components
The Boeing Aerospace Companv”s

Microprocessor Design Support Center (MDSC)
has been used to support development
activities associated with the prototype.
The MDSC is hosted on a VAX 11/780 running
under the VMS operating system. This
facility provides disk storage, interactive
program edit facilities, cross
assembly/compilation capabilities, prints
out program listings, writes object
programs on the cassette tapes, and
downloads object code into the research
model.

The support software system used to
develop the demonstration and performance
monitoring software is described in detail
in [9]. This system is comprised of a
"WHEN BLOCK" compiler, a cross assembler,
and a relocating linking loader. All of
these components are hosted on the MDSC VAX
11/780. There is additionally a
monitor/debugger program which is resident
in a private EPROM associated with each
processor. It provides the basic support
required to develop and execute software on
the research model.

System Controller Module

The SC is implemented on a single
wire-wrapped module which interfaces with
each of the eight processors through the
dual ported private RAM associated with
each processor. A block diagram of the SC
is shown in figure 3. It is constructed
from MSI and SSI components and contains a
thirty two column by thirty two row control
memory which can be loaded by the
processor. At any one time the SC can
therefore control up to thirty two
different tasks based on the status of
thirty two data conditions.

To effect system operation, the
processor loads the private RAM interface
words with the appropriate values and makes
a transition request via a set of control
signals. The SC then polls the individual
Processors until it finds a transition
request outstanding, at which time it does
a direct memory access (DMA) operation
across the interface to determine the
desired operation and returns (also via
DMA) an activity disposition to the
Processor.

[z

TYPR COMP AR A TOR
|

2]
f1

e
=

”x'r
i
i i
I g
HH 5
= .
vy CONTROLLER/
il. = B
E OrCO0E
i; b o B
== BUSFER -0 -0-0-0~ -4
P Y 4850
- SHHT FHEREEEE

Figure 3: System Controller Block Diagram

The processors and SC operate on an
asynchronous request/response basis.
Whenever a processor is in need of an
activity, it initiates a SC entry
transition request. On completion of an
application task, the processor returns the
variable update vector (V) and initiates an
exit transition request which updates the
system status vector appropriate for the
completed task. The number of active
processors can therefore be changed and the
system will automatically reconfigure
itself with tasks being dispatched to only
the active processors.

The processing rate of the SC can be
changed under software control. There are
two speeds available. The average time
required for an entry/exit transition pair
is 11.5 microseconds at the high speed
setting. The slow speed setting results in
an averade entry/exit transition time of
115 microseconds. The two modes of
operation are used to allow accurate
performance data gathering over a wider
rgnge of application program execution
times.

Dual Processor Modules
There are four wire-wrapped processor
modules each of which contains two TI 9900

16-bit microprocessors. (A more detailed
description of the SBP 9900 microprocessor
can be found in reference [8].) These two
processors are multiplexed onto a common
bus via time-phase multiplexing. The
common bus allows each of the processors to
access up to 32K, 16 bit words of shared
memory and the RS 232 interface port. Each
processor has 4096 words of private EPROM
and 256 words of private RAM which are
accessible only to that processor. (These
rivate memory addresses are subtracted
from the 32K address space of common
memory.) The EPROM contains a copy of the
monitor/debugger program which is used to
support software development on the
machine. The RAM is used as a scratch pad
area for temporary storage and also
provides the interface means between the
processors and the SC. The RAM is
dual-ported, one port is attached to the
processor and the other to the SC. The two
devices use a protocol to communicate with
each other via DMA to a set of dedicated
locations in this private RAM. The EPROM
and RAM are both physically located on the
dual processor module.

As mentioned above the two processors'
address and data busses are connected to
single busses for access to common mMemory.
This interconnection approach takes
advantage of a TI 9900 memory access
jdiosyncrasy of jnitiating memory accesses
only on even processor clock cycles. By
skewing the system clock pulses for one of
the two processors by one cycle, the two
processors can access common memory without
conflicts. This approach was described in
reference [6] for a number of other
currently available microprocessors.

Accordingly, there are four phase-one
processors and four phase-two processors in
the eight processor prototype system. The
phase-one processors will never contend for
memory with the phase-two processors and
vice versa. Memory access conflicts among
processors of a given phase can occur,
conflict resolution logic having been
included on the memory modules for this
case.

Shared Memory Modules

There are four identical wire-wrapped
memory modules. Together these modules
provide 32K words of common memory with an
address interleaving scheme which spreads
any four sequential addresses across all
four memory modules. Each memory module
has four access ports, one for each dual
processor module. This confiquration
allows four memory regquests to be serviced
simultaneously if the four requests are
made to different memory modules. Access
arbitration logic is used to resolve
simultaneous access conflicts among
processors to the same memory module. The
arbitration loqic services the processor
with the lowest processor number first when
::gugtocessors contend for the same memory

el

The interleaved memory has the
advantage of randomizing processor memory
accesses across the four memory modules.
The programmer therefore need not be
concerned with explicit distribution of
programs and data that may be accessed
concurrently among different memory
modules. All programs and data are
distributed ipso facto among all memory
modules.

From a memory contention point of view
the resulting system can be be modeled as a
four processor by four memory system, with
each processor distributing its accesses
randomly across the four memory modules.
Since for a typical instruction mix, the TI
9900 processor initiates a memory access on
about one memory cycle in three, a very
small amount of memory contention overhead
is encountered. Actual memory contention
measurements are described further on.

Peripheral Interfaces .

There are only two peripherals in the
prototype system, an Intecolor 8001 color
terminal and a real time clock. The
Intecolor terminal is used as the system
console to enter operator commands and also
as a display device on which to display
system performance data. The Intecolor
terminal is interfaced to the
multiprocessor system through a serial
RS232 interface port which is accessible to
all eight processors. The real time clock
is used to generate processor interrupts
which are used to establish monitoring
intervals for gathering the throughput
performance data. The real time clock is
connected to processor number one, and
therefore processor number one is essential
to gathering performance data.

DEMONSTRATION SOFTWARE CONFIGURATION

The demonstration software is
comprised of two major components, a set of
programs to demonstrate qualitatively how
software executes in parallel on a
multiprocessor system and a set of proqrams
that demonstrates quantitatively the
throughput performance obtained from the
eight processor research model.

Oualitative Demonstration

In the example program execution
demonstration, a parallel flow diagram for
the example program being executed is
displayed on the Intecolor terminal. The
display is comprised of a set of boxes
associated with the the application program
tasks and a set of lines interconnecting
the boxes associated with data conditions
used to control the execution order of the
tasks. A color coding scheme is used to
show the activation status of each task and
data condition in the system.

Each task (box on the display) can be
in one of four possible states; inactive,
eligible, active, or complete. Each data

condition (line on the display) has two

possible states, true or false. Each of
these states is indicated by a unique color
on the display.

The demonstration has been set up to
allow the operator to execute the example
programs with any number of the eight
processors active and to displav the
execution sequence that actually occured
during the execution. The display has been
designed to scale up the execution time of
the tasks so that the viewers can observe
details of the processinag that has occured.
The ability to freeze the display at any
point is also provided.

A histogram plot of the number of
active and number of eligible tasks in the
system during each time interval is also
generated. This time-line provides a
graphic representation of the processing
speed up and processor utilization as a
function of the number of active
processors.

There are two example programs that
have been ‘developed. The first is an Euler
coordinate rotation calculation which is
used in many aerospace/avionics
applications to perform coordinate
reference conversions. In this example,
the nine element cordinate rotation matrix
is computed from the three Fuler rotation
angles received as input. The second
example program demonstrates the
application of the Transition Machine
architecture to non-scientific
applications. A string of up to 12 decimal
digits are input by the operator are
converted to the text string representation
of the number. For example, the digit
string 75924 is converted to the text
string "seventy five thousand nine hundred
twenty four". In this application each of
the number groups (billions, millions,
thousands, and ones) are processed in
parallel. Additional parallelism is
realized within each aroup. The individual
strings generated by each of the four
groups appear on the screen when the task
that generated the string completes.

In developing programs for a parallel
machine, the obijective is to minimize the
calculation duplications and at the same
time maximize the number of calculations
that can be performed in parallel. A data
flow analysis was done manually to meet
this objective for the two examples

described above. An automated software
development support system is described in
[9] which automates this data flow analysis
of conventional HOL structures and
generates an associated set of asynchronous
tasks which can be executed in parallel by
the Transition Machine.

Quantitative Measurements

The second part of the demonstration
is designed to show quantitatively how the
:hroughput performance of the system varies
or different application task
configurations. A set of synthetic tasks

has been developed whose execution duration
can be varied and interconnectivity can be

modified to simulate any particular task

configuration. These tasks are comprised
of a delay loop which has been instrumented
to calculate various system performance
parameters during their execution. The
execution time of the synthetic tasks can
be varied from a minimum of 306
microseconds to a maximum of 109
milliseconds in 43 microsecond units by
varying their loop iteration counts.

There is a copy of the synthetic
application task both in common RAM main
memory and in the private EPROM of each
processor. The operator may select any one
of a number of memory configurations. The
amount of inter-processor memory contention
that is experienced during the program
execution will vary appropriately. By
locatina both the programs and the
processor”s workspaces in common memory,
memory contention will be maximized.
Alternatively, by locating both program and
workspace storage in private memory, memory
contention will be minimized.

There are four system performance
parameters measured; the average number of
processors (or portion thereof) executing
application tasks, locked out of the SC,
being serviced by the SC, and experiencing
memory contention. This data could be used
to determine the processor utilization and
response time for the selected task
configuration and number of active
processors. It alternatively can be used
to determine the critical system design
parameters which limit attainable
throughput.

The synthetic task configuration
utilized in the baseline throughput
performance demonstration is comprised of
nine independent jobs. Each job is
comprised of three tasks which activate
each other in sequence. This configuration
ensures that there are always nine
concurrent tasks so that processor
performance degradation will not be due to

insufficient jobs.

MEASURED PERFORMANCE DATA

Fiqure 4 shows the averaqge number of
processors executina the application tasks
as a function of the number of active
processors. The family of curves
corresponds to synthetic task execution
times varied from 306 microseconds to 109
milliseconds. The number of processors
executing application proqrams represents
the useful computing capabilities obtained
from the system. As shown in the plot, the
maximum number of processors in application
programs grows substantially as the average
task execution time is increased. The
measurements plotted in figure 4 are shown
in table 1. This table includes
measurements of the number of processors in
each of the other processor states as well.

Wunber of Processors ia Applicstiom Programs

A

Application task
gxecution times

I‘OIOQ microseconds
3034 microseconds

826 microseconds

523 microseconds

306 microseconds

A Gad R |

1 s s] 3

Wumber of Processors

Figure 4: Number of Processors in

1 2

Application Programs

1: Throughput Performance Data

3 4 -} 6 7 8

0.0

0.19
0.48
1.33

0.0

0.53
0.66
1.81

0.0 0,01 0.01 0.01 0.02
0.98 1.70 2.45 3.33 4.25
0.81 0.88 0.95 0.98 1.00
2,22 2.41 2.59 2.68 2.74

TASK TIME = 306 microseconds

MC 0.0 0.0 0.0 0.0 0.01 0.01 0.02 0.02
LT 0.07 0.23 0.29 0.36 0.77 1.15 1.77 2.64
Or 0.16 0,31 0.48 0.64 0.75 0.86 0.92 0.94
AT 0.77 1.46 2.23 3.00 3.48 3.98 4.29 4.39
TASK TIME = 523 microseconds
Mc 0.0 0.0 0.0 0.0 0.01 0.01 0.02 0.03
LT 0.06 0,11 0.20 0.24 0.40 0.47 0.58 0.90
Oor 0.11 0.23 0.34 0.45 0.55 0.66 0.77 0.85
AT 0.82 1.66 2.46 3.30 4.04 4.85 5.64 6.23
TASK TIME = 826 microseconds
MC 0.0 0.0 0.0 0.0 0.0 0.0 0.01 0.01
LT 0,01 0.03 0.06 0.09 0.10 0.12 0.14 0.15
0.04 0,07 0.11 0.14 0.18 0.21 0.25 0.28
AT 0.95 1.90 2.84 3.77 4.72 5.66 6.61 7.56
TASK TIME = 3034 microseconds
:5 0.0 0,0 0.0 0.0 0.0 0.0 0.0 0.0
54 0.0 0.0 0.0 0.0 0,0 0.0 0.0 0.01
-4 0.0 0.0 0.0 0.0 0.01 0.01 0.01 0.01
1.0 2.0 3.0 3.99 4.99 5,99 6.99 7.99

TASK TIME = 10909 microseconds

Figure 5 g
humber of proce
Number of actiy
One to eight,

€ synthetic ¢
bove with the
of 30¢ microsec
Were executing

hows a plot of the measured
ssors in each state as the

e processors is varied from
This data was generated with
ask configuration described
average task execution time
onds. All active processors
a single re-entrant copy of

the synthetic task resident in common
memory.

The primary cause of the diminishing
return in throughput capabilities as
processors are added to the system is the
increasing number of processors locked out
of the SC. Once a processor is being
serviced continuously by the SC, no
additional processing capability is
obtained by adding processors to the
system.

This performance data agrees with the
predictions of an analytic model of the
sources of overhead in tightly coupled
multiprocessor systems[10]. According to
the model, the parameter which determines
the point where the performance bend over

occurs is:
P =A/o.

Here A is equal to the average application
task execution time and o is the sum of the
processing times of the critical portions
in the control mechanism required to
service the application task reguests.
the number of active processors is
increased, the number of processors in
application tasks will asymptotically
approach:

As

T * P,

Where T is equal to the number of requests
that can be serviced concurrently by the

control mechanism.
The SC in the research model can

service only one processor reguest at a
time (T=1) and can operate at two different

~

F task execution time = 306 microsecondw

Processors lecked out

rocensors being serviced
by the SC

[
r

Number of Processors In Bach State

processors in applicstion
tasks

~
T

~F
-

1) 3 i %
Number of processors

Figure 5: Number of Processors in
Each State

speeds. - At the high speed setting, the
average entrv/exit transition pair (o)
takes 11.5 microseconds and at the low
speed setting it takes ten times longer or
115 microseconds. The performance data
shown in the plot of figure 4 was generated
with the SC operating at the low speed

shown in the plot, the
essors in application
1*p/0, as predicted by

and as
getting proc

,pproached

1.

the mggegenetate the performance plots
to the SC operating at its

°°rresp°ndingthg average application task
n time can simply be multiplied by
tor of 10. In other words, decreasing
8 §‘°. factor of 10 is eguivalent to
inc¥easinq A by the same factor; T?is e
eans that for the minimum application tas
b ecution time (306 microseconds) and the
;: operating in the high speed mode, there
will be 7.56 of the eight processors
executing application pzogram:ion the

e. The slower speed option was
:;;i::ented only for demgnstratiog pgrposes
in order to show the performance ben over

omena.
phen This performance data can be compared
to the performance data obtained fo; an

lementation of a software executive
;:gg:am for the research model[l]. The
software executive program has an average
entry/exit processing time of about 1
millisecond as compared to the 11.5
microsecond processing time of the SC.
added efficiency of the SC over its
software counterpart allows a much larger
number of processors to be effectively
combined.

It should be noted that there is
virtually no overhead associated with
memory contention in the eight processor
research model. Memory contention overhead
for various processor/memory
interconnection schemes has been modeled in
a number of papers [4,7,10]. These papers
indicate that memory contention in tightly
coupled multiprocessor systems need not be
a major source of overhead.

There are seven architectu;al features
which have been utilized to limit the
amount of memory contention experienced.

In summary, the architectural design
f:atures described previously have

virtually eliminated memory contention as a
source of overhead in the research model.
The performance degradation experienced as
additional processors are added to the
system can therefore be attributed to
overhead sources other than common memory
access contention,

p[oqt.ms

The

CONCLUSION
The performance data that has been
obtained demonstrates the practicality of
the Transition Machine architecture and
:;;1f1es the accuracy of an analytic model
o a which predicts the performance of
ghtly coupled multiprocessor systems.
cre;ther' these demonstrated features lend
co.b:nce to claims for effectively
: t1":hq large numbers of microprocessors
You 3 tly coupled configurations using
hsition Machine concepts.,
chhgrhe efficiency of the Transition
Pe architecture and its amenability to

conventional higher order lanquages
programming provide low cost, easily
programmed systems which can be utilized to
obtain high throughput, fault tolerance and

modular expandability.

Many advanced

aerospace/avionics applications which have
processing and environmental requirements
that have not been solveable using
currently available single processor
approaches may now be addressed.

ACKNOWLEDGMENTS

The authors would like to express

their sincere appreciation to Phil Corelli
who was responsible for the detailed
hardware design of the prototype and to
Steve Alston who was responsible for

hardware integration of the machine.

Their

expertise was invaluable throughout the
development of the system.

REFERENCES

1.

6.
7.

10.

11.

Anastas, M.S. "A Multi-Tasking
Executive for a Microprocessor-Based
Multiprocessor.", M.S. thesis,
University of Washington, 1982.

and R.F. Vaughan. "Direct
Architectural Implementation of a
Reguirements Oriented Computing

Structure." Proc. of MICRO-12. Nov.
1979, pp 93-100

and R.F. Vaughan. "Parallel
Transition Machines.", Proc. of 1979

Int. Conf. on Parallel Processing.
Aug. 1979, pp 76-85

Chang, D.Y.; D.K. Kuck; and D.H.
"On the Effective Bandwidth of

Lawrie.

Parallel Memories.", IEEE Trans. Comp.
Vol. C-26, No. 5, May 1977, pp
480-490

Keller, R.M. "Parallel Program
Schemata and Maximal Parallelism."
Jour. ACM. Vol. 20, No. 3, July
1973, pp 514-537 and Vol. 20, No. 4,
Oct. 1973, pp 696-710

Loewer, R. "The 2-80 in Parallel."
Byte. July 1978

Patel, J.H. "Performance of
Processor-Memory Interconnections for
Multiprocessors." IEEE Trans. on

Computers. Vol. c¢-30, No. 10, Oct.
I§§E, pp 771-780

Texas Instruments. 9900 Family Systems

design and Data Book. Texas
Instruments. Huston, Texas. 1978

vaughan, R.F. and M.S. Anastas. "A
Software Development Support System for
Advanced Avionics Applications
Incorporating a Parallel Machine
Architecture.” Proc. of NAECON “82.

May 1982
and M.S. Anastas. "An

Analysis of Multiprocessor Throughput
performance in the Limit." Journal of

Digital Systems. vol. 4, No. 2,
Summer 1§§6, pp 153-175
and M.S. Anastas.

"Microprocessor Based Transition
Machines." Proc. of COMPCON Fall 1979.

Sept. 1979, pp 327-333

