DIRECT ARCHITECTURAL IMPLEMENTATION OF A REQUIREMENTS-
ORIENTED COMPUTING STRUCTURE

M. S. Anastas and R. F. Vaughan
The Boeing Company
P.0. Box 3999

Seattie, Washington

Many of the advances in computing technoiogy
that have a direct bearing on software productivity
have been integrated into a unique requirements-
oriented computing structure devoid of transfer of
control constructs. Overhead is a major obstacle
to such a structure. A computer architecture based
on this structure is therefore derived for which
combinational logic can be used to solve this over-
head problem. A family of computers called Tran-
sition Machines is thereby defined which addresses
many of the major problem areas affecting software

productivity.
Introduction

It is ironic that when software productivity
is unilaterally identified as a colossal problem,
the major advances in this area have all been with-
in the traditional software framework provided by
Von Neumann machines. These advances have been in
the areas of program specification, top-down design,
structured programming techniques, decision dia-
gramming, the implementation and acceptance of
structured higher order design and compilation
languages, and the parameterization and modeling of
software design issues. But there have been no
parallel major advances to the state-of-the-art in
computer architecture to support these strictly
software and programmer-oriented advances.

Hardware advances have all been characterized
by one or more of the following descriptive adjec-
tives: smaller, faster, more reliable or cheaper.
A1l of these are amazing, but they don't address
the cost of software, and before systems (the real
products) are cheaper, software productivity must
be accommodated by machine organization.

It is proposed here that a new framework for
software may be essential to obtaining the desired
productivity. To obtain this framework, software
productivity requirements are addressed directly.
Once such a framework has been defined, an architec-
tual implementation of this framework is developed
which meets these original requirements.

Software Productivity Requirements
on Structure

The requirements that have been proposed for a
new computation structure follow basically those
jdentified by enthusiasts of structured programming,
but the approach here is to extend these requirements

and impose them at the architecture level of the ma-
chine. These extended requirements are the following:

Q3

98124

1. a requirements-oriented structure.

2. a structure for which only the essential aspects
of program control must be specified by the pro-
grammer.

3. a structure which eliminates transfers of con-
trol (GO TO, CALL, queueing requests, etc.).

4. a structure which simplifies the error-prone
aspects of decision logic.

The significance of each of the require-
ment areas is discussed below.

Requirements-Oriented Programming

It is commonly accepted that the specification
of program requirements, the transformation of these
requirements into program design data, and the sub-
sequent verification that the design meets the
requirements are the major software development
activities. These are therefore the areas where
improvements must be made if software productivity
is to be significantly increased.

One reason that these development activities
require such a large percentage of the overall de-
velopment process is because of the incongruities
between the typical situation/response nature of
program requirements and verification tests, and
the procedural implementation of these requirements
in the final design. Thus, there is a major trans-
lation from requirement to design which is a time-
consuming, error-prone process. Once the design has
been established and implemented, it no longer re-
sembles the structure of the requirements. The qulf
between requirements and design hampers program under-
standability and therefore documentation, maintain-
qbi]ity, etc. Thus, it is accepted as virtually
impossible to verify that a program of any magnitude
actually implements its requirements precisely. A
computation structure for which there was more direct
traceability to requirements would certainly be
associated with a tremendous increase in productivity.

Since requirements are typically of the form:
"When a certain situation arises, perform an associ-
ated function," it would be nice if programs also had
that form. Situations are typically describable in
terms of propositions on parameters which are repre-
sented in the data base. The associated functions
correspond to programs which change parameter values.
Thus information contained in requirements and design
data are essentially the same with the difference in

CH 1516-4/79/0000-0093$00.75 © 1979 IEEE

form being primarily organizational.

Elimination of Degeneracy

In the conventional software framework the
programmer translates the computation requirements
into a sequence of actions to be performed by the
machine. In many cases, however, there is no se-
quence of actions implied in the requirements, so
a sequence is artifically induced by the programmer
to provide concreteness since the computation struc-
ture supported by conventional languages and computer
architectures does not accommodate the specification
and execution of unordered statements. Thus, vari-
ant "correct" program versions can exist with en-
tirely different structures. These are degenerate
solutions to the problem described by the require-
ments specification. In essence the programmer has
the ability (actually the responsibility) to induce
his own design philosophies and personal preferences
into what would hopefully have been an objective
translation of a requirement that could have been
directly compared with other versions. This has
the effect of making the implementations less di-
rectly relevant to the requirements such that veri-
fication must be performed only at the lowest level
to determine that the final result does in fact
precisely meet the requirements,

Exploitation of the parallelism inherent in
the computation is also precluded by arbitrary
determination of execution sequence. This reduces
program effectiveness in parallel processing envi-
ronments. The amount of parallelism available in

typical programs has been investigated by Kuck3
indicating that the average number of possible par-
allel paths in a program is linearly related to the
size of the program rather than related as the or-
der of log of the size as was formerly thought to

be the cases. Thus there could be a significant
increase in reaction time for large real time pro-
grams.

The inherent relationships between program
segments is also obscured such that Tater program
maintenance is more likely to induce errors. Thus,
by requiring only the essential aspects of program
control, the requirement translation process would
be simplified, many of the previously arbitrary
decisions on sequence made by the programmer would
be eliminated, and exploitation of parallelism
would be supported.

Eliminating Direct Transfers of Control

The direct transfer of control has been
identified as the major source of programmer coding

error54’7. Many of the developments in software
engineering have been directed to the elimination
of these structures from programs. The result has
enhanced software productivity, but since these
structures are still supported to varying degrees

in compilers, and unilaterally at the machine level,
many errors can still be attributed to them. Con-
ventional executive requests to execute a specified
program are also GO TO's, the only difference being
that they are implemented at a high level. There

94

seems, however, to have been no concerted effort to
eliminate these.

The executive request problem is an interesting
one in that a program could be completely correct
but not be executed under the right conditions be-
cause it was incorrectly requested. Thus, there is
an intricate coupling between programs. There is
also the possibility of a totally unsuspected pro-
gram requesting the execution of a program for a
completely inappropriate situation. Before a pro-
gram can be completely verified to meet its require-
ments, every set of conditions under which it can be
requested must be known, and therefore every re-
questing program must be verified along with it.

Simplification of Decision Logic

The elimination of GO TO's is significant from
an error-proneness point of view, but decision logic

structures are very major offenders a]so.7 Decision
diagramming has been used to address some of the
error proneness of these logic structures. But they
are a monitoring and evaluation tool -not implemented
as a part of the program structure in the design and
thus their use constitutes a divergence (additional
effort) from the central development path.

The typical decision logic constructs involve
a conditional transfer of control which therefore
allows circumvention of GO TO-less dogmas at the
detailed implementation level. They also have the
feature of treating program activation conditions
in an indentured manner without global awareness.
A particular test for a>b, for example, may only be
executed if a<c, d>e....But this total situation may
not be readily apparent to the programmer writing/
reviewing the code. Therefore, very complex meshes
of logic may be implemented. This makes it very
difficult to provide assurance that the specific
conditions of execution are not precluded from ever
being realized because of a decision higher in the
structure.

Computation Structure

Figure 1 shows a program whose structure is
propounded. It addresses many of the software pro-
ductivity concerns described above. It is charac-
terized by a totally event driven structure with
only assignment statements even for the implementa-
tion of decision logic. This is facilitated by
using logical operators to assign the status of data
base conditions that are determined dynamically
during the execution of programs. As a result,
there is a complete elimination of direct transfer
of control structures. A very requirements-oriented
control structure has resulted, for which only the
essential aspects of program control must be indi-
cated, and these obtain global significance. Para-
1lelism is easily exploited in that multiple sets
of satisfied activation conditions can result in
multiple tasks being simultaneously executed.

In this structure each program is divided into
two components: 1) a complete specification of the
globally defined conditions required to enable the
program (WHEN a list of conditions is met), and a

L&

DECLARATIONS o
NITIALLY ("1"). FACTORIAL . READY (

Pt ;UN.R(ADV ("0"), CONTINUE.SUM (*0"), s

CONHWE.FACTORIAL("O"). COMPUTE .RATIO ("0)

INTEGER COUNT, FACTORIAL, SUM
REAL ANSWER
1: WHEN (INITIALLY) 0O
pex BEGIN:
COUNT : = 0

FACTORIAL : = 1
SUM : =0
END

THEN
SET (FACTORIAL.READV. SUM.READY)
RESET (INITIALLY)
WHEN (SUM.READY, FACTORIAL .READY) DO
BEGIN:
COUNT : = COUNT + 1
CONTINUE.SUM : = COUNT < 20
CONTINUE.FACTORIAL : = COUNT < 20
COMPUTE .RATIO : = COUNT > 20
END
THEN
RESET (SUM.READY, FACTORIAL .READY)
IIEN (CONHNUE.FACTORIAL) 00
BEGIN:
FACTORIAL : = FACTORIAL * COUNT
END

THEN
SET (FACTORIAL.R[ADY)
RESET (CO?IT!NUE.FACIORIAL)

pGH4: WHEN (CONTINUE.SUM) 00

BEGIN:
SUM : = SUM + COUNT

END

THEN
SET (SUM.READY)
RESET (CONTINUE.SUM)

PGMS: WHEN (COMPUTE .RATIO) DO

BEGIN:
ANSWER : = SUM/FACTORIAL

END
THEN
RESET (COMPUTE.RATIO)

FIGURE 1: REQUIREMENTS-ORIENTED PROGRAM STRUCTURE

specification of the conditions to be updated on
completion of the program (THEN a list of condition
revisions); and 2) a set of data transformation
statements. Table I shows the complete dichotomy
oF control and data transformations. There are
obvious similarities to the formal program specifi-

cation technique, described by Parnas”. This is
the computation specification that is proposed to
be implemented directly in a machine architecture.

NAME CONTROL INFORMATION DATA TRANSFORMATION
PGM 1: WHEN (INITIALLY) BEGIN:
THEN COUNT: = 0
SET (FACTORIAL .READY, FACTORIAL: = 1
SUM.READY) SUM: = 0
RESET (INITIALLY) END
PGM 2: WHEN (SUM.READY, FACTORIAL . READY) BEGIN:
THEN COUNT: = COUNT + 1
- RESET (SUM.READY, FACTORIAL, CONTINUE.SUM: = COUNT < 20
READY) CONTINUE . FACTORIAL: = COUNT < 20
SET VARIABLY (CONTINUE.SUM, COMPUTE.RATIO: = COUNT > 20
CONTINUE . FACTORIAL , END
COMPUTE . RATIO)
PGM 3: WHEN (CONTINUE.FACTORIAL) BEGIN:
THEN FACTORIAL: = FACTORIAL*COUNT
SET (FACTORIAL.READY) END
RESET (CONTINUE.FACTORIAL)’ .
PGM 4: | WHEN (CONTINUE.SUM) BEGIN:
THEN SUM: = SUM + COUNT
SET (SUM.READY) END
RESET (CONTINUE.SUM)
PGM 5: | WHEN (COMPUTE.RATIO) BEGIN:
THEN ANSWER: = SUM/FACTORIAL
RESET- (COMPUTE. RATIO) N

TABLE I: CONTROL/DATA TRANSFORMATION DICHOTOMY

An abstract model of computation whi
whi
as a mathematical basis for a model of Eoﬁguzgi used

95

e for direct execution of syn-
tax as shown in Table I has previously been identi-
"Named Transition Systems."”™ A
vetem is a triple (Q,>,z). The

d respectively to the set of all
a set of all

.), and a

architecture sui tabl

fied by Keller as

named transition s
components correspon
possible system states (q], Gps Ggeee)s
transitions between states (»], Fps e
set of names (o], Ty 03,...) associated with groups

of individually programmed transitions between states.
Since there is a one-to-one correspondence between
the indices on sigma and the names themselves, 'ghe
indices will be used to indicate the names: 1 1m-=
plies o, and I = {i} implies I. The index i € I 1is

associated with a group of system transitions des-
cribed by the statement:

when R (£) do €' = ¥; (€)

The symbols in this statement are defined as

follows:

i = the index of the group of transitions whose
common feature is that they all result in
the data transformation indicated by the

function Y.
£ = the set of all data items in the system.

Ri(g) = the predicates on the data set, £ which are
essential to defining the appropriateness
of transitioning according to whichever
member of the group i is associated with
performing the data transformation wi(g)'

dﬁ(g) = the programmed functional data transformation
associated with the group index i which
operates on the data set, & and results in
a revised data set £'.

Keller seems to have envisioned this model as
only a formalism to be used in the specification
and yerification of parallel programs, but in the
remainder of this paper it is used as a computation
structure on which to base a computer architecture.

Derivation of Transition Machine Architecture

A family of computer architectures (referred
to throughout this paper as "Transition Machines")
has been derived which directly implements the pre-
yious]y described computation structure. Figure 2
is a paradigm showing the general characteristics
of this architecture; it is comprised of two major
components as was the computation structure des-
gri@ed above. The first component maintains status
1nd1cat1ons for all the relevant data base conditions
in the system. It also contains indicators associ-
ated with each subsystem (subsystem is used inter-
changeably w1th application program task throughout
the rest of this paper) specifying the subset of
global data base conditions required to activate
the.spec1f1c subsystem and indicators specifying the
modification to the conditions implied on completion
of the subsystem. The second is a computation com-

ponent which executes the code associated with the
data transformation aspect of each subsystem.

CONTROL COMPUTATION
UPDATE THE STATUS OF | COMPLETION
GLOBALLY DEFINED- « PERFORM
CONDITIONS DATA

e R

DETERMINE THE STATUS
OF SPECIFIED CONDITIONS

TRANSFORMAT ION

ACTIVATION

FIGURE 2: COMPONENTS OF TRANSITION MACHINE

The operation of these two components is as
follows. The control component first determines an
eligible subsystem by examining the current status
of the global conditions specified by each require-
ments indicator associated with the subsystem. The
eligible subsystem is identified to the computation
component which then executes the specified sequen-
tial arithmetic operations associated with the sub-
system and returns status indications specifying the
conditions that have been modified dynamica™ hy
the subsystem. The control component updates tne
global condition indications associated with having
completed the subsystem. The cycle is then repeated
until the system runs to completion.

The dynamic status update is a requirement im-
posed by having no data base operations performed
directly by the control component as part of the
eligibility determination. The control component
must therefore separately maintain the status of re-
levant conditions current in the data base. This is
accommodated by incorporating an update to the global

condition indications on completion of each subsystem.

The discussion that follows outlines a mathe-
matical derivation of the constructs essential to
the Transition Machine architecture from the named
transition system model. This derivation proceeds
from an intuitive statement, given here without
proof, that any state q € Q can be represented by a
binary status vector S = (s](g), sz(gg...) such
that:

q = = s'j for all j e J

Where each element sy € S is a binary status indi-

cation associated with a proposition on the data set
g£. For example, sj iff a<b.. Also included are

logistic operations such as Sk iff "c available".
J is defined as the set of all indices on S.

q' iff sj

E1igibility Determination

An "enabling predicate", Ri(g) can be repre-
sented by disjunctive sets of indices (Ki' k1, k?,
...), where the sets of indices K% = (k], Kp» wivol)id
are subsets of J and are defined such that:

Ry iff s, for all ke K% for some & € L.

L; is the range {2} of disjoint sets of indices
K% on the system status vector which are individu-

96

ally sufficient to satisfy the enabling predicate
Ri(ﬁ). Thus, an equivalent to the evaluation of

the enabling predicate Ri(E) can be effected by a

complex logical operation on S. The determination
of which elements of S to involve in this evaluation

are determined by the set of indices, K%:

(A s,
keK%

R;

3 v

QcLi

The logical operators are defined as follows:

nZN Xn = x]Vx2Vx3V cen Xpees for all neN.
Xn B XA XA XA e XA vee for all neN.
neN

v

A

logical "or" operation

\

logical "and" operation

A1l that is actually required however is an im-
plementation of each of the evaluations which imply

Ri which we will define as R%. To this end, we
define:
Ri = Ay Sy
ch1

The superscript on K% and R% can be eliminated

by redefining the subscript as a running index, i’
for which there is a one-to-one correspondence be-
tween values of i' and unique pairs of values

(i, 2). The distinction between i' and i will be
ignored, with the understanding that there may be
multiple disjunctive transitions of the same name
which are associated with unique indices. Thus
the disjunctive expressions in Ri(g) are handled

separately but are still associated with the same
data transformation wi(g). The range, I on the

subscript i, defined by i € I can be used to re-
strict the range, J on the status vector, since only
the indications in S that pertain to one or more
enabling predicates have implementation significance.

J U K,
jel !

This will result in a minimum length vector S
which will be sufficient to support an implementa-
tion of the enabling predicates. And it becomes
irrelevant whether our initial intuitive statement
is true to its fullest extent or not.

For convenience a matrix of logical elements,
rij’ can be defined to replace the sets Ki’ with
elements defined as follows:

"ij iff je Ky

Each row in this matrix is associated with a
disjunctive enabling predicate and each column is
associated with a specific binary status indicator
in S. The expression for an eligibility indicator
E1 can now be defined as an operation on each ele-

ment of S as follows:

where x defines the logical complement o i
1nd1cat9r X. This equation def?nes a 105122? Eégiry
product” which relates a vector of enabling predi-
cate status-1qdications to a binary status vector of
g]oba] cond]t1ons. The analogy with inner products
is more obvious from the equivalent expression:

V r. .A;.

E. = -
jed J

1

The matrix is an indication of which conditi
pertain to which enabling predicates. rons

A method has now been described for implemen-
ting the WHEN Ri(E) aspect of transition systems by
generating the E vector from the lo ical dot prod
of the R matrix and the S vector g PRORIRE

Data Transformation Activation

What remains to be shown is how to implement
the DO &' = wi(g) component. The data transfor-

mation aspect can be supported by the following
more conventional computer structures:

1. A1l data items in &€ that are modified by the
function wi in generating &' can be specified by
a set of "write" pointers to the data items.

2. A1l data items in E that are read as inputs
during the data transformation ¥, can be specified

by a set of "read" pointers.

of the program code repre-

3. The starting address
can be specified by an

senting the function ¥,
"execute" pointer.

By providing these constructs to a conventional
processing unit, the data transformation wi(a) can

be implemented as the execution of a sequential
program.

System Status Update

here that on compleyion_of
wi(a) there is an implied

o the system status vgctor S
te the impli-

It should be noted
the transformation g!' =

simultaneous update t

(g). This is required to incorpora)
cations to the data pase into the statgs indicators
ins (£). We therefore define a function Gy as
follows:

§t = 6y (S(g), E')

To further define this function, G (S,€') it
is noted that for any data transformation wi(E),
(s, £') has one of four possible

the function G1
of the status vector:

effects on each element sj

1. sj is set true always

97

25 Sj is set false always

3. Sj remains unchanged always

4. sj is determined dynamically during the data
transformation.

> By defining thg following two control vectors,
j and Fi and a variable update vector Vi in the

same space as S, Gi (S,£') can be reduced to a

simple logical expression.

T, = (t), tys t3...tj...td) where t is true if and

only if the indicator is to be set true or left
unchanged.
Fio= (f)s fy f3...fj...fJ) where f. is true if and

only if the indicator is to be set false or left
unchanged.

vi(€") f (Vs Vps VgeusVyee
appropriately (true or false)
that are determined dynamically by wi’ and Vj are

"don't care" for S5 not determined dynamically.

.vJ) where Vj is set

for the indicators sj

With the above sense assignments the update
vector function Gi (S,&') can be implemented as
follows:

Sjnew (tJA?\]) v (?JAVJ) v (tJASJO]d)

Table II shows the truth table associated with
this update function. There are many sense assign-
ments to the update vectors which would have re-
sulted in different update functions. This parti-
cular definition has the advantage of performing,
in addition to the required update, a masking oper-
ation which prevents inappropriate variable condi-
tion updates from being introduced through the

vector, V(£').

S NEW IMPLIED MODIFICATION TO S

VJ SET VARIABLY TRUE OR FALSE
01 0 SET FALSE

10 1 SET TRUE
11

UNCHANGED

$j oo

TABLE II: STATUS UPDATE SENSE ASSIGNMENTS

Machine Implementation

To implement the control component shown in
Figure 2 as a device, hereafter referred to as the
System Controller, a set of data cqnstructs has
been defined on which logic operations can be per-
formed to jmplement efficiently the required con-
trol functions. These construc
following:
us vector register
tatus indicator for
is relevant to the
bsystem.

s = A single global system stat
which contains one binary S

1obal condition that
3??21 ility of at least one su

R = A relevance vector for each subsystem which con-
tains one binary status indicator for each glo-
bal data base condition in the system, indi-
cating whether or not the condition is required
to enable the associated subsystem. (The set
of global data base conditions is defined as
the union of all conditions required to enable
the individual subsystems which comprise the
system.) These vectors are arranged as rows in
a matrix which is maintained in a memory module.

E = An eligibility vector register which contains
one binary status indicator for each subsystem,
representing the eligibility or non-eligibility
of the associated subsystem.

Figure 3 shows the dimensional relationships
of these constructs. The R vectors are arranged in
a matrix form as shown and the E vector can then be
generated by forming the logical "dot" product of
the R matrix and the S vector:

E=R"*S

It is this basic matrix operation that the
System Controller performs to determine the eligi-
bility of subsystems. The design details of this
and other operations are described in detail else-

where.]
STATUS OF JTH
DATA CONDITION
s[__ !'1! J FOR EXAMPLE:
I : *A AVAILABLE*,
— “A>8", ETC.
Iul
""""" E]"'-'-"TT¢—:umnunor
e e - LS wmey == {TH PROCEDURE
1
O
[
H L
FIGURE 3: DIMENSIONAL RELATIONSHIPS OF S, E, AND R

To incorporate the update to the S vector
register on completion of a subsystem, the follow-
ing additional constructs are defined:

T = A "true" vector for each subsystem which con-
tains one binary status indicator for each glo-
bal condition in the system, indicating the
global conditions that are to be set true or
left unchanged on completion of the subsystem.
These vectors are arranged as rows in a matrix
which is maintained in a memory module.

F=A "false" vector for each subsystem which con-
tains one binary status indicator for each glo-
bal condition in the system, indicating whether
the global conditions are to be set false or
left unchanged on completion of the subsystem.
These vectors are also maintained as a matrix

in a memory module.

V = A single variable (dynamically updated) vector
register returned by the computation component
(processor) on completion of a subsystem. This

98

register contains one binary status indicator
for each global data base condition indicating
the updates determined dynamically during the
execution of the subsystem. (Note that due to
the sense of the definition of T, F, and V, the
range of conditions that can be modified vari-
ably are limited, such that any unauthorized
updates will be masked out by the T and F vec-
tor. This is as shown in Table I1.)

For software reliability and typical security
concerns of access permission, there are three
additional constructs included in the System Con-
troller. These are the "read", "write", and
"execute" pointer arrays which allow/restrict the
computation component to perform the functions
g' = wi(E) as described previously.

The Transition Machine's general implementation
of these constructs is shown in Figure 4, applicable
to a single System Controller and computation com-
ponent. The computation device is identified as a
processor, this is in a more or less traditional
sense. In the extreme, the processor capabilities
will be greatly restricted, but this can be effected
in a conventional microprogrammed implementation.
The processor to memory interface is completely
conventional.

SYSTEM CONTROLLER

s ¢ wRITE READ EXEC T F

3

\ A\ 4 \
Fr o e)

PROCESSOR

PROGRAM AND DATA MEMORY

FIGURE 4: TRANSITION ﬁACHINE ORGANIZATION

The general operation of these machines is
shown in the flow diagrams of Figures 5 and 6.
These figures respectively illustrate the processor
and System Controller interface logic implemented

in microcode.

Special Design Considerations

The previously defined control and data con-
structs that are maintained in the System Controller
will expand in size with the software system imple-
mented. To maintain flexibility, the System Con-
troller must therefore be designed to support a
range of system sizes. This can be accommodated in
a number of ways, for example, the constructs can
be stored in large blocks of conventional memory
dedicated to the System Controller, or the System
Controller can be designed from modular components
which would allow an incremental expansion of the
device. An alternate approach, one applicable to

START
INTERRUPT STARY
PROCESSING PROCESSOR
s

SAVE CURRENT
PROCESSOR
STATE

1S
SYSTEM

SYSTEM
CONTROLLER
BUSY

CONTROLLER
BUSY REQUEST AN
ELIGIBLE
PROCEDURE

REQUEST

PROCESSING FOR SYSTEM

INTERRUPT THAT CONTROLLER
JUST OCCURRED BUSY
T

1s
SYSTEM EXECUTE
CONTROLLER DESIGNATED
BUSY PROCEDURE
REQUEST
COMPLETION
RESTORE PROCE
PROCESSOR TO FOR PROCEDURE
INTERRUPTED

STATE I

FIGURE 5: MICROPROGRAMMED PROCESSOR INTERFACE LOGIC

NOTE: SYSTEM CONTROLLER
1S SET BUSY BY
THE PROCESSOR

START
SYSTEM
ONTROLLER

ROCESSORNNO,
REQUEST,
U
YES

11 = INDEX

o
11=0

READ ROW 1 OF READ ROW 1 OF

T AND Fo AND V
DATA CONSTRUCTS DATA CONSTRUCTS

CON'U;E i COMPUTE UPDATED

PROCEDURE VECTOR (Sye)

ELIGIBILITY $ T NEW
J

,,, $1m ey

YES

...

YES

HLELES

Si1= lu“
INDEXs = §
EXECUTEs = EXECUTEi
WRITEs Ivll'l'ti
llADl'ltADl

I ,

SET SYSTEM
CONTROLLER
NOT BUSY

FIGURE 6: MICROPROGRAMMED SYSTEM CONTROLLER LOGIC

large systems, would be to implement an operating
system which could dynamically overlay the con-
structs of a fixed size System Controller or multiple
System Controllers. These and other approaches are
currently under investigation. There seems to be

no significant developmental problem to support the

required flexibility.

Processor interrupts can be accommodated by
having an interrupt subsystem identified in the
System Controller. Only the status update aspects
will be effectual; the associated relevance vector

will preclude internal activation.8 The micro-
program associated with interrupt processing is
shown in Figure 5.

The details of the operation of the machine are
dependent upon the specific objectives of the imple-
mentation. Three specific objectives would be:

1. To implement a System Controller to effect the
feasibility of exploiting the inherent software
productivity advantages even in a conventional main-

frame computer.

2. To implement highly efficient multiprocessor
control. Two additional System Controller con-
structs are required and a semaphore implementation
of the System Controller/processor interface. De-
tail design considerations for parallel systems are
discussed in references 1, 8, and 9. Figure 7
illustrates a general parallel Transition Machine

configuration.

1/0 1/0 1/0
DEVICE| |DEVICE| |[DEVICE |
0 1 2
SYSTEM
ExteRaL |cowmaouter] —— :

| 1) 1
CESSOR L 24 .
PROCESSOR| [PRO PROCESSOR| |PROCESSOR

P E—
s &)

== H—2,
MEMORY MEMORY MEMORY MEMORY oe
MODULE MODULE MODULE MODULE

FIGURE 7: PARALLEL TRANSITION MACHINE

3. To implement multilevel secure ADP systems.
Additional design considerations are involved in
such implementations. Some of these considerations
are treated in reference 10.

The advantages associated with the first imple-
mentation objective have already been discussed as
a part of the derivation of the architecture. These
advantages will apply also to the remaining two
objectives which are the exploitation of inherent
parallelism applying particularly to multiprocessor
implementations, and verification advantages apply-
ing in particular to the certification requirements

of secure systems.

Conclusions

Significant advances in hardware technology
have greatly expanded the areas of application for

computers. Computer hardware has become faster,
smaller and cheaper than ever thought possible.
Software development costs on the other hand have
been steadily increasing. Attempts have been made
to reverse this trend with the development of
structured software engineering techniques such as
top down design, decision diagramming, and so on,
but these attempts have been only partially suc-
cessful. The cost of software development is still
increasing.

To solve this problem a major re-evaluation of
the computational requirements of computing systems
has been needed. From such identified requirements
a computation structure has been derived and 1 om
this computation structure a machine architecture
jdentified which has been developed to implement
the structure. This top down design approach has
culminated in the Transition Machine architecture
described above. The resulting architecture elimi-
nates the difference in form of the program require-
ments and implementation. This characteristic faci-
litates software productivity and also the develop-
ment of multilevel secure systems and efficient
multiprocessors.

The results described here have indicated the
tremendous potential of addressing software pro-
ductivity by a unique computer architecture. This
potential extends into the areas of ADP security and
the coordination of many microprocessors in multi-
processing configurations. In conclusion, however,
it is appropriate to address some of the problems
yet to be solved.

1. However attractive from an analytical viewpoint,
the software structure is nontraditional, and the
disadvantages of this must not be underestimated.
This problem could be ameliorated by the development
of translators for accepted structured compilers,
but some of the advantages of the structure would
be lost by this approach. Ultimately a unique soft-
ware development approach should be accepted.

2. A unique set of software development support
tools will be required by the new structure. In
addition to compilers, there is much potential for
automated static program analysis.

3. Operating systems will be required which can
page the control constructs in System Controller
memories. This is basically the same problem as the
current paging of task control block data, but the
differences in form make this an area where exten-
sive investigations must be performed.

The software productivity problem is one of the
major problems whose persistence across the_comp!ete
range of current software development practices 1S
legend. The complete solution would seen to require
not just a new software development methodology but
a new computation structure supported by hardware.
It is therefore incumbent that there be a breaking
away from conventional computer architectures.

References

1. Anastas, M. S. and Vaughan, R. F., "Parallel
Transition Machines", Proceedings of 1979

They can be summarized as follows:

100

10.

!nternationa] Conference on Parallel Process-
ing, IEEE, Michigan (August 1979)

Keller, R. M., "Formal Verification of Parallel
Programs", Communications of the ACM 19, 7
(July 1976)

Kuck,.D. J., "A Survey of Parallel Machine
Organization and Programming", ACM Computing
Surveys 9, 1 (March 1977)

Ledgard, H. F. and Marcotty, M., "A Genealogy
of Control Structures", Communications of the
ACM 18, 11 (November 1975)

Miqsky, M., "Form and Content in Computer
Science", ACM Turing Lecture, Journal of the
ACM 17, 2 (February 1970)

Parnas, D. L., "A Technique for Software
Modq]e Specification with Examples", Communi-
cations of the ACM 15, 5 (May 1972)

Tanenbaum, A. S., "Implications of Structured
Programming for Machine Architecture", Com-
munications of the ACM 21, 3 (March 1978)

Vaughan, R. F. and Anastas, M. S., "Micro-
processor Based Transition Machines", Pro-
ceedings of COMPCON '79 Fall, IEEE, W.D.C.
(September 1979)

Vaughan, R. F. and Anastas, M. S., "Limiting
Multiprocessor Performance Analysis", Pro-
ceedings of 1979 International Conference on
Para;]e] Processing, IEEE, Michigan (August
1979

Vaughan, R. F. and Anastas, M. S., "Prelimi-
nary Analyses to Obtain an Expanded Model and
Preferred Implementation of Verifiably Secure
ADP Systems", Boeing document D180-25090-1
(February 1979)

