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Abstract -- This paper describes an analysis
of the major sources of overhead in multiprocessor
systems with emphasis on performance equations for
large systems. A model is developed for studying
the relative contributions of these sources of
overhead. The traditionally treated problem of
memory contention is shown to be containable with-
in bounds with limit equations provided. Software
control table lockout on the other hand is shown
to be beyond containment in large systems such
that an upper limit on performance exists. Effec-
tive methods of reducing lockout overhead are
explored. Control program efficiency is shown to
be the only means of achieving very large multi-
processor systems which are efficient. It is
shown also that if such efficiency could be ob-
tained in a centralized control mechanism (by hard-
ware or other means), there are no other immediate
theoretical problems associated with increasing
multiprocessor size.

Introduction

There are known limitations to single proc-
essor approaches to increasing general purpose
computer throughput capabilities [8]; moreover,
requirements for increased throughput seem more
general and insatiable than ever. The advent of
inexpensive microprocessors has emphasized the
necessity for an effective multiprocessing tech-
nology capable of effectively combining many proc-
essors to obtain significant throughput. The cost
advantages of multi-microprocessors over high
speed main frame processors provide a natural
motivation for re-evaluating the problems pre-
viously encountered in large MIMD multiprocessing
systems. It is therefore the limiting performance
behavior where many processors are involved that
is the central theme of this paper.

The theoretical problems associated with dead-
lock avoidance and synchronizing concurrent proc-
esses have been solved. [3],[9],[13] The practi-
cal problems however, which are encountered when
implementing large multiprocessing systems have
seemed unavoidable. To address these practical
issues, a general parameterized model of the major
overhead contributions in multiprocessing systems
is presented. Descriptions of the individual over-
head contributions modeled separately are found in
the literature, but not integrated mathematical
models as presented here. Nor has the emphasis of

these other models been on performance expectations .

in the limit as system size increases. The model
described in this paper relates the three major
contributions to overhead in multiprocessing sys-—
tems to the desired application program processing
requirements in order to assess potential perfor-
mance capabilities. A diagramatic illustration of
the modeled sources of overhead is provided in
Figure 1. These are the following:
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1. System Control. The multiprocessor exe-

cutive control program execution time requirements.

2. Control Table Lockout. To provide co-
ordinated control, common queues are required
which imply critical sections in the contrcl pro-
gram which accesses these queues.

3. Memory Contention. Common physical mem-
ory for multiple processors requires the possi-
bility of multiple processors converging on the
same physical memory module, in which case a
processor may have to wait until other processors’
access requests have been serviced.
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FIGURE 1: MODELED SOURCES OF OVERHEAD

To obtain a comprehensive model of multiproc-
essing overhead, without inappropriate complexity,
a hierarchical model has been developed. The
levels and states in this hierachy are the obvious
ones. Figure 2 is a state diagram of the time
expenditure states at the top level in this model
of a multiprocessor system. These states are:

P, the normal processor operations associated with
instruction sequencing and performing the instruc-
tions in its repertoire, and C, the memory delays
which may include sequences awaiting memory con-
tention resolution. In order for this model to ,
be valid, both the spatial and temporal distribu-
tions of memory access requests must be constant
and independent of the changing occupations of

the processor. These assumptions are character-
istic of current multiprocessing. (One of the
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FIBURE 2: TIME EXPENDITURE STATES



design trades considered further on investigates
potential advantages resulting from changing the
temporal distribution.)

Time overhead (throughput) is the multiproc-
essing concern here. Other aspects of multiproc-
essing including memory and peripheral sizing have
been modeled in reference [6]. These other aspects
are very important in a system, and should be op-
timized to obtain the best performance for any
given configuration. But they are not the major
obstacles to a viable multiprocessing capability.

Processor Time Expenditure Model

The time utilization characteristics of the
various activities that can be assigned to the
processor are modeled here. In a multiprocessor
system, it is expected that for some of these
activities the amount of time expended may be de-
pendent upon the number of processors, N. (This
definition of N will be assumed throughout the
rest of this paper.) The P state of the processor

shown in Figure 2 can be modeled in more detail as
shown in the state diagram of Figure 3.
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states in this diagram are the following:

FIGURE 3:

1. Idle state, awaiting an eligible appli-
cation program task,

2. Application task execution,

3. Control program execution, and

4, Control table lockout.

In order to get performance predictions in-
dependent of the software configuration, it has
been assumed that the idle state will be null.

We are only interested here in performance degra-
dation not attributable to insufficient jobs to
go around. (Utilization considerations will be
discussed later on however.) It is also assumed
that lockout will only be experienced as a part

of the control program execution, and is therefore
called control table lockout. Critical sections
in the application program are assumed to be re-
solved by task eligibility considerations handled
by the control program. To resolve such conflicts
in the application programs is not the direction
of high performance multiprocessing, since ex-
cluding the parallel execution of such programs
improves throughput. The timeline in Figure 4
shows the phasing among the remaining three states.
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Each of the three remaining processor time expen-
ditures is modeled very simply in the following.
An equilibrium situation is assumed among the
states, so that the numbers of processors entering
and leaving each state are approximately equal.
The level of sophistication could obviously be
increased appreciably in these models, but it has
been found that performance predictions are re-
latively insensitive to such improvements. The
simpler models are easier to describe and under-
stand, and fit existing multiprocessor performance
data very adequately.

Application Program Task Execution

The model of application task execution in-
volves a constant execution time requirement, A,
for all tasks with a single queue/dispatch/exit
control program request overhead. The model is
still valid for programs making multiple requests
so long as the ratio of application to control
program execution time, P = A/$, is a contant.

This ratio is used extensively later on in the
analytical derivation of performance} it is called
the individual processor efficiency. It is af-
fected only by the control program overhead per
application task, defined so as to exclude the
effects of lockout induced by multiple processors.




Control Program Execution

‘'The execution time of the control program is
assumed to be broken into J partitions., These
partitions are assumed to be mutually exclusive
critical sections with equal execution frequency
as well as execution time, ¢j.

J
L by =3¢
j=1

The control program is assumed to require the
same constant total amount of execution time, @,
for each task. It is also assumed that its exec-
ution time is independent of the number of proc-
essors in the system. The latter of these assump-
tions supposes that queues are implemented with
multiple pointers such that the lengths of queues
do not result in a commensurable amount of search-
ing to process linked task lists. This seems to
be a unilateral approach to sophisticated control
programs appropriate to multiprocessing.

¢ = f

Control Table Lockout

Coordination of the activities of many proc-
essors to achieve a single computational objective
requires the control program to have common task
queues for exploiting the parallel aspects of in-
dividual application programs. It is assumed
that control table lockout occurs at entry to each
of the J control program partitions, each of which
is comprised of a mutually exclusive critical
section. The total amount of lost time due to
this control table lockout will be:

J
L= % Lj' where Lj is the amount of lockout
J=1

attributed to the jth critical section.

In order to derive an expression from which a
value can be computed for the overhead L, we will
define N, as the number of processors waiting and/

or executing the jth critical section in the con-
trol program. From this definition it can be seen
that the amount of lockout time a processor will
experience before entering the jth critical sec-

tion will be Lj = Njﬁj = N‘1 I N, can be deter-

mined as the probability PJ of an individual proc-

essor being in this jth state, times the number of
possible competing processors, N-1 in this case.
The probability PJ can be determined as the pro-

portion of time spent in the jth state to the
total amount of time spent by each processor.

$.+L (1+N,)
- - —_—
5y e o TCPFIHN)
Thus, since NJ = PJ-(N~1). we obtain a second

order equation for Nj:

(14N, ) * (N=1)

Ny = —(_‘:J p+1+—Nj)
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The formal solution to this equation is:

Lo e et e
Ny =23 T2 2 ) J

For J=1, we obtain:
[o] N-0
N- - i
L.¢[-—2—+(2)+D 1]

The expected number of locked out processors,
N1 is plotted in Figure 5 for various values of p.
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These curves are in agreement with Madnick [15]
in spite of a very different derivation. The
significance of increasing the effective parti-
tions in the control program will be discussed
further on.

Combining Processor Time Expenditures

The objective of the processor activity mo-
deling has been to obtain insight into the rela-
tive amount of time spent by each processor in
its A, @ and L states. Equivalently we are inter-
ested in knowing the total number of processors
in the configuration occupied by each activity.
This assessment can be obtained by establishing
the ratios of time spent in each activity to the
unit of a processor's time. By defining XA, Xo,

and XL as the respective ratios for the A, @, and

L activity states, it can be seen that:

A () L
- + + -
Nt Xt X ~mpr T ag tagn - L

Furthermore, the equivalent number of proc-
essors involved in each activity per unit time
NA' NG' and NL can be determined as:

Hy B Ny ™ 29" By, = Y

-y



In order to establish these relative contri-
butions, we can substitute in the results obtained
previously. The unit of processor time for J=1
is thus seen to be:

U EP+HI+L/Q = [%9+V(‘l'2-9)2 +P ]

-0 - e |
N, = P*N-U
= e —l
Ny = N U
Ny = (U-p-1) * N ° "

Memory Contention Delay Model

There are various memory/processor intercon-
nection schemes that can be employed for access
arbitration including multiport controllers and
crossbar switches as described by Enslow [10]
which effect the logical interconnecting paths
shown in Figure 1. Specific configuration depen-
dencies such as processor clock phasing, memory
address interleaving, processor to memory speed
ratios, and processor memory request duty cycle
are discussed in reference [17]. The mathematical
modeling of the performance to be expected of con-
figurations incorporating such dependencies is
addressed here.

In a general multiprocessor configuration with
M memories and N processors, we are concerned with
the percentage of time that the processors spend
waiting for a memory to service their requests

(21,[12].

General Model of Synchronous Interleaved Memory

To simplify the model we have assumed equal
likelihood of a processor accessing any of the
memories on a given request. Address interleaving
makes that a realistic assumption. In addition,
it has been assumed that each processor synchro=
nously makes a memory access each cycle; this is
a worst case situation tending to make the result-
ing performance predictions pessimistic rather
than optimistically unrealistic.

We will begin by defining the probability,
Ps(i) of exactly i processors converging on single

memories anywhere in the system on a given access:
N
Ps(i) = ;Ei pS(i,j), where LxJ is the largest

integer less than or equal to x, and Ps(i,j) is

the probability that there are j instances of
exactly i processors converging on single memories
in the system. (For a detailed treatment of pro-
bability theory, refer to Feller [11].) To pro-
ceed, we will consider the conditional probabili-
ties pp(i,j), and pm(i,j) which are respectively

the probabilities of a processor and a memory
being. involved in an i-way convergence of proc-
essors on memories if there are j instances of
such convergence in the system. Under the random
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accessing and equivalence between processors as-
sumptions that we have made:

pp(i,j)=i'%, since ixj of the N processors are

involved.

pm(i,j)=l, since j of the M memories are involved.

Now the unconditional probabilities of processors
and memories being involved in i-way convergence
situations can be determined as:

N N
LTJ LYJ

P (1) = 3 p (i) ¢ B (i,0) = § X pg(isd) "
P g P ) Vo
13 L
_ i R | .
P (1) = j§1 ICRIRENCHIRS PN

No_ M g
And ctherefore: Pp(l) =iy Pm(l)

Modeling Memory Response Time

So far we have only been dealing with the
probabilities of processor/memory convergence,
whereas what we are really interested in is con-
tention situations where processor time is lost.
We therefore assume that there is some number, k
(not necessarily unity, but for convenience a
positive integer) of processors whose requests can
be accommodated by each memory module without any
of the contending processors experiencing delays.
k is the ratio of processor request time over
memory response time. A new conditional probabil-
ity, PR(i) can therefore be defined which is the

probability that a processor involved in an i-way

convergence situation will actually experience
contention:

(i - k)
P (1) = S22,

for i>k; PR(i) = 0, otherwise.

Then the probability a processor will experience
memory contention due to i-way convergency situ-
ations is:

P (1) = Pp(i) * Pp(d)

P () = (=K % LB (1), for i7k;

Pc(i) = 0, otherwise.

The total probability of a processor experi-
encing memory contention PC, can be computed as:

N
P.= 2: Pc(i), since contention can only occur

C iokhl

when i>k. Therefore we have:

N
P Y P (1) " (1K)

M
N ik

c



Approximating the Distribution Function

We are left then with the requirement for ob-
taining a distribution function Pm(i). Many such

models of processor queueing on individual memor-
ies have been advanced [2],[7]. It has been shown
that little accuracy advantage accrues from se-
lecting the more sophisticated models involving
Markov chains. This is particularly applicable
for the configurations discussed in this article
where memory contention is shown to be small,
since we are primarily interested in configurations
for which M>N and k>1. Bhandarkar [5] has shown
percentage errors of less than 5 percent in all
cases for the model assumed here.

The model that we have selected is the bi-
nomial approximation of Strecker [16] which was
found to "work well in all cases' by Baskett and
Smith [4] and with more accuracy for M>N by
Bhandarkar [5]. This model is precisely valid
for the initial allocation of processors to mem-
ories under the assumptions made previously.

According to this model, the probability that
exactly i processors converge on a given memory
module on a given cycle is:

i

- (N &) ad)

where BY s pomtins
i/~ i!(N-i)!
Therefore, according to this model:
i %
N!(i-k) (_1_) (1_.3-)N i
M M

M
™% 1r(N-1)!

¢ i=k+1

The form of Pc as a function of the number of

memory modules is shown for N=20 processors in
The impact of varying the relative

Figure 6.
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speed, k of memory access and processor request
logic is illustrated in the figure, applying re-
spectively for k=1, 2 and 3.

It should be noted that all of the conver-
gence and contention probabilities are functions
of M, N, and k, specifically PC = Pc (M, N, k).
The probability distribution functions Pp and Pm
are functions of M and N as well as i, e.g.,
Pm(i) = Pm(i, M, N).

Limiting Behavior of 'Square" Systems

It is interesting to note that memory conten-=
tion decreases very rapidly with M until the num-
bers of memories and processors are approximately
equal (M=N), and very slowly thereafter. We will
refer to systems for which M=N as "square' multi-
processors, and define the notation: PC(M=N,¢,k)

= PC(M,M,k) = PC(N,N,k). To understand the signi-

ficance of configuring multiprocessors with ap-
proximately equal numbers of memory modules and
processors, consider the limiting values of
PC(M,N,k) as M and N become large. The limits of

the summation can be changed to obtain:

M is M k
P == (i-k) P (i) - 5 > (i-k) P_(i)
c N i=0 m N =0 m
N
Then noticing that 2: Pm(i,M,N)=1, we obtain:
i=0

N k
M . M M
P =< % 1P (1) -ks=x= (i-k) P (i)
c N =0 m N N Eg% m

To obtain a limit for Pc’ we have substituted

M=N into Pm(i,M,N) and used the limit

N
_ Limit pE
1/e oo (l-ﬁ)
Then for '"square" systems:
k
Limit P (M=N,k) = 1-k + 2 3 k=i
Moo ¢ j=o 1

The limting values for k=1,2, and 3 are
shown in Table I.

TABLE I: LIMITING MEMORY CONTENTION PROBABILITIES
Asymmetry Ratio [ Limiting Conten-

Relative Speed | (Numbers of Probability
(Memory to Processors to Limit P_(M,N))
Processor, k) Memories,T ) M, N ¢

1 1 0.368

2 i 0.104

3 i) 0.023

1 1/2 0.213

1 1/3 0.150




Incorporating Access Duty Cycle

In real systems there is typically not exact-
ly one memory access per processor per request
cycle, and the processors are not synchronized
relative to whether they actually access memory
on a given cycle. There are two typical processor
characteristics which are responsible.

1. Processor operations do not typically re-
quire an access on every cycle of the instruction.
Statistically, somewhat less than half of the TI
9900 microprocessor machine cycles require a
memory access, for example.

2. Some processors implement a cache memory
scheme for look-ahead memory accessing to reduce
the average wait time in the processor. This
reduces the number of cycles for which the proc-
essor makes memory accesses, but substantially
increases the number of accesses outstanding
when they are made.

These (in general combined) phenomena estab-
lish an effective, although statistically varying
memory access duty cycle. These characteristics
of real systems cannot be modeled by varying the
memory to processor speed ratio, k. However, at
least where large numbers of processors are as-
sumed, and approximately constant access duty
cycle, d can be expected which will alter the
apparent number of processors actually making mem-
ory accesses at any particular cycle to an equili-
brium value for large systems of N= d .N'. Real
"square" systems would then be characterized by
the model as "rectangular" systems of dimensions
N= Nn.M, where

Limiting Behavior of "Rectangular' Systems

It is interesting to consider memory con-
tention effects when system size is increased in
congruent rectangular form. Just as was the case
for "square" systems, it can be seen that for
large "rectangular' systems the contention prob-
abilities level off to approximately constant
values. Chang, Kuck and Lawrie [8] derived an
expression for the limit from the memory's view-
point (the probabilitiy of a memory rather than a
processor being involved in a contention situa~
tion). The results do not incorporate the speed
ratio, k.

Limiting processor contention in large '"rec-
tangular'" systems can be derived using the same
approach as described previously for "square"
systems.

(k1) i-1
it

k

n+l2

Limit P (N= M'M,k) = 1 - 10

Moo

Accuracy considerations relying on Bhan-
darkar's [4] data suggest 1) < 1 as the primary
domain of usefulness for this equation. The
limits for k=1 and for asymmetry values N =1,
1/2 and 1/3 are shown in Table I. The asymp-

totic approach to these limits is shown in
Figure 7.

N is the apparent asymmetry ratio.
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Combining Processor and Memory Contention Overhead

In the previous accounting of processor time
expenditures, there were only three categories
corresponding to the three processor states of
application program, control program and control
table lockout. It must now be acknowledged that
not all of the time spent in these three states is
correctly attributed to these causes, since memory
contention takes a proportional amount of time
from each. By this assumption, we have:
C=(A+0+L)-Pc. Thus, if we define the respective

primed quantities to represent the time in each
state exclusive of memory contention, we have:
A+P+L=A"+@'+L"'+C and therefore:
A'+¢'+L'-(A+0+L)(1-Pc) and the respective number

of processors in a multiprocessor configuration
expended in the various states are the following:

N,=N, Q=-P)
Né-No(l-Pc)
NL - NL (1 - Pc)
Nc-(NA+N¢+NL) 'PC-N'PC

The form of Nc is independent of NA’ Nﬁ’ and

N NC increases linearly with increasing system

L
size for congruent rectangular increases, with

the slope depending upon the relative speed of the
memories and processors and the asymmetry ratio.
This phenomenon is shown in Figure 8. The dashed
line represents the extrapolation from data pre-
sented by Bhandarkar [5] which resulted from a
more accurate Markov chain model for k=1, TN=1.

The form of the other three expected numbers
of processors N}, Né and N‘L can be obtained by

substitution from previously obtained solutions

for NA' Nﬁ‘ NL and PC. It should be clear that
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N' provides a desirable measure of throughput in
A :
multiprocessors. It provides the effective number
of processors being applied to the application
programs.

To understand the importance of individual

processor efficiency on multiprocessor throughput
performance, it is interesting to look at the

form of NA (p):

P-N* (1-P()

N, =

A

For large N there is an asymptotic approach
to a limiting throughput, T , and this limit is:

T = Limit N! = P (1-P)

N+ @

The trailing factor may approach a limit as
well, since in general PC is a function of N.

Thus, the control program efficiency not only
determines the utilization per processor, but also
the maximum achievable throughput of the entire
machine. In Figure 9 (which represents state of
the art capabilities in large scale multiprocessor
systems) there is a maximum achievable return
(even with Pc=0) of two equivalent processors

applied to application programs. By adding any
number of processors beyond 4, the most that will
be gained is 0.35 equivalent processors applied
to application programs.

The previous equation also indicates the im-
pact of memory contention on maximum performance.
Memory access efficiency, OM, the probability of
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FOR P=2,k=1,n=1,M=50

not experiencing contention on an access cen be
defined as follows: qu l—PC. Then maximum
throughput, T , for the whole system is equal to
the product of the efficiencies of an individual
processor, pp, computed with no contention or

lockout, and pM of the memory accesses:
T-= C% . pbf

Design Trades in Multiprocessors

It is significant that in the example shown
in Figure 9, memory contention is not responsible
for the reduced efficiency of processors as a
function of their increased number. This is not
to say that memory contention cannot be a very
significant overhead factor, but rather that it
is a problem which has been solved by the existing
multiprocessing technology. In the example, mem-
ory contention is reduced to insignificance by the
large number of memory modules (M>>N). Another
method which solves the memory contention problem,
which is particularly appropriate in microprocessor
systems, is increasing the relative speed of the
memories. These solutions are appropriate re-
spectively to large mainframe configurations
requiring a large memory base to perform their
normal operations, and to microprocessor-based
systems for which it is not a stringent require-
ment to obtain relatively fast memories.

Reducing Memory Contention

There are of course many configurations for
which memory contention appears to be very signi-
ficant. In the solid lines in Figure 10, the
situation previously presented in Figure 9 has
been modified to include only 5 rather than 50
memory modules. In this example, there is actu-
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ally a negative improvement in application program
throughput for more than 4 processors. The reason
for this negative return can be seen to be attri-
butable to the increasing number of locked out
processors. These processors are assumed to
access semaphores in main memory and thereby con-
tribute heavily to memory contention and are not
productive even when successful. This phenomenon
can be eliminated by assuming the semaphores are
stored in a special purpose memory dedicated to
semaphore control. In this case the ratio of the
numbers of processors in the three processor
states independent of contention are the same.

The effective number of processors competing for
memory is reduced, however, to NA+N0' By esti-

mating PC for 5 memories and NA+N0 processors, we

obtain the revised overhead plots shown as dotted
lines. The marginal gain in performance for few
processors can be seen. Memory contention has
been effectively reduced, but the advantage has
largely been taken up by increased lockout and
system control overhead. This example illustrates
the very important point that memory contention
can be reduced to insignificance without a commen-
surable return in throughput. See also Flores [12]
for a similar conclusion. Memory contention is
not the peril of multiprocessing.

Reducing Processor Lockout

It is clear from the precedifg discussion
that lockout is the primary contributor to multi-
processor inefficiency for large numbers of proc-
essors. Let us therefore consider various means
by which it can be reduced. Thé starting point
of course is the consideration of the assumptions
that went into the model of control table lockout.
The primary assumption was that the control tables
are locked out throughout the execution of the
control program. Thus, the approaches in attempt-
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ing to resolve the control table lockout problems
are:

1. Design a control program employing a more
limited use of lockout,

2. Reduce the execution time of the critical
sections in the control program, and

3. Partition the control program into many
separate rather than a single common critical
section.

The relative effectiveness of the various
methods of reducing lockout overhead ultimately
depends upon the design of the control program
itself. There are upper limits for each of these
methods. The amount of processing power released
to application programs as the result of improve-
ments in these areas will be discussed below. For
few processors (small N) the advantage of reducing
the length of critical sections or increasing the
number of partitions is negligible, whereas an
improvement in control program overhead is an
immediate advantage even for few processors. For
large N the improvement in performance has the
same form for reducing extent of critical sections
and improving efficiency.

It should be apparent that these three solu-
tions have direct analogs in the reduction of mem-
ory contention which are respectively: Reducing
accesses to common memory, increasing the relative
speed of memory response logic, and increasing the
number of independent memory modules which can be
accessed. Solutions incorporating the three ap-
proaches to lockout are illustrated in the follow-
ing discussion, with the improvements all being
relative to the system whose performance charac-
teristics were shown in Figure 9. Line A in
Figure 11 represents this baseline system's
throughput performance.
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Limiting Control Program Lockout. It is not actu-
ally necessary for the entire control program to

be locked out such that only one processor can be
executing it at any one time. In Figure 11, line

B, the expected performance is shown for a system
whose control program need be locked out only half
of the time. The data for the figure was obtained
using a different value of @ for lockout than for
determining the proportion of useful work performed.
pLOCKOUT can be computed as the total amount of

time the processor spends in non-locked-out proc-
essing states divided by the amount of processing
time spent in states for which lockout is required.
In the current model this can be expressed as:

0 _AQ-2) _ P+
LOCKOUT

70 7 1, where Z is the

proportion of the control program requiring lock-
out. In Figure 11, line B, P =2, 2=0.5, and
therefore pLOCKOUT = 5.

Control Program Efficiency. An obviously effec-
tive method of improving multiprocessor throughput
is by directly decreasing the execution time of
the critical section portions of the control pro-
gram. Figure 11, line D illustrates the perfor-
mance to be expected if the efficiency of the con-
trol program were improved by a factor of 2. In
this case P =4 instead of P

=)
Lo

Partitioning the Control Program. The lockout
which is necessary in control programs does not
necessarily lock out all of the critical sections
in the program. Earlier, an equation was developed
for lockout assuming there were J partitions of
the control program with independent critical
sections. This equation was used to obtain the
performance indicated in Figure 11, line C, for
J=2. In reference [18] it was also suggested
that a small number (2, 3 or 4) or partitions
significantly improve efficiency. It should be
obvious that the limiting number of partitions
that could be incorporated is not a large number
however.

Increasing Individual Processor Efficiency.

The level at which application programs inter-
face with the control program has the same impact
on efficiency as does the overhead involved in the
control program. If the execution time of the
typical application program task is increased
such that the number of executable instructions is
doubled, the same efficiency advantages will accrue
as if the overhead of the control program were
reduced to one-half its original value. One must
be careful in this regard, however, since the uti-
lization of processors can be significantly re-
duced. Utilization was ignored in this article
by assuming that there are no processors in the
idle state. (See Figure 3.) The job control
languages of batch processing systems largely
determine the task level. This is a critical
issue particularly in mainfram multiprocessing,
but one which is beyond the scope of the current
article.
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Kuck [14] investigated the potential for
breaking up general problems into parallel segments
to obtain commensurable speedup. The inherent
parallelism was shown to be roughly proportional
to the size of the application program, if the
program units which are dispatched are taken to a
low enough level. This is in contrast to what was
formerly thought to have been an order of log
relationship [14]. Thus, there is potential in
the programs themselves for solution by parallel
arrays of slow processors to obtain very high
throughput. But this level would reduce the
effective value of A by orders of magnitude which
in turn reduces P (and with it feasibility) by
orders of magnitude. And thus, methods which
artifically increase P do not attack the multi-
microprocessor program.

The Future of Multiprocessing

It has been demonstrated that the high lever-
age design considerations in multiprocessing at
this time are control table lockout and the con-
trol program overhead. Hardware support for the
multiprocessor executive is the obvious place to
look for help, since the improvement required to
realize large arrays of processors is orders of
magnitude rather than simple multiples.

Let us consider the potential of such solu-
tions to determine whether there are other theo-
retical problems. Figure 12, line A illustrates
the system described originally in Figure 9, but
assuming an individual processor efficiency of
P = 100. In this configuration memory contention
becomes appreciable after about 10 or 20 processors,
and the maximum achievable throughput is seen to
be about 40 processors. But as shown in Figure 12,
line B, the asymptotic limit can be more than
doubled by increasing the relative speed of the
memory response logic. In this case k=3 rather

than k=1.
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In going to such high throughput systems,
however, there would be requirements for commen-
surably larger numbers of memory modules. Figure
13, line A, illustrates the situation for P =100
with "square'" multiprocessors (M=N) and k=1. The
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FIGURE 13: HYPOTHETICAL SYSTEMS WITH THE
SAME NUMBER OF PROCESSORS AND MEMORIES
improvement in contention with increasing memory
response time can be seen in lines B and C respec-
tively for k=2 and k=3.

Conclusions

It has been shown that at least analytically
there are no size limitations to conventional
multiprocessing approaches which are beyond the
current state of the art except control program
efficiency. Hardware seems to be the only effec-
tive way of significantly increasing this para-
meter. Exploring methods of increasing hardware
support for the control programs is therefore the
most likely avenue to extending the limits for
multiprocessor throughput performance. A com-
panion paper discusses such an approach for which
multiprocessor control can be made extremely
efficient [1].
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