SOFTWARE DEVELOPMENT SUPPORT SYSTEM FOR ADVANCED AVIONICS APPLICATIONS
INCORPORATING A PARALLEL MACHINE ARCHITECTURE

Russell F. Vaughan and Mark S. Anastas

The Boeing Aerospace Company, P.0. Box 3999, Seattle, Washington 98124

ABSTRACT

The application of low-cost micropro-
cessor technology to the demanding computa-
tional problems of advanced avionics chal-
lenges the ability of computer architects
to develop schemes for effectively allocat-
ing processes across collateral ensembles
of processing elements. There is in fact
a spectrum of challenges extending into
the verification and validation support
for the processes so allocated.

This paper addresses the problems en-
countered during the development of soft-
ware to be used on special-purpose paral-
lel architectures and describes a demon-
strable general purpose parallel software
development support system developed at
the Boeing Aerospace Company. It is pro-
posed that with such support systems it
may at last be feasible to exploit the tre-
mendous potential of parallel processing
in critical advanced avionics.

INTRODUCTION

The epithet, "special-purpose paral-
lel," with regard to computer architec-
tures is a description which has become
synonomous with the negatives: "pifficult
to understand," "impossible to schedule, "
and "expensive to program." Its antithe-
sis, "general purpose" computing, has come
to encompass a range of capabilities with-
out regard to hardware. This includes the
ability to support source programming in
one of several conventional higher order
languages, Ada constituting a synthesis
for the DOD. Thus to maintain general pur-
Pose applicability claims for parallel pro-
Cessing architectures, it is necessary to
demonstrate that programs can be written
(and verified) in conventional higher lev-
el programming languages and yet run effec-
:izzly on the particular parallel architec-

The authors have defined and implemen-
ted this kind of generalized parallel soft-
;’”e development support. It is shown in
igure 1. This system was designed to sup-
g°rt Transition Machine[l,3] developments
ut has more general applicability. Its
Purpose was to extend the range of useful-
ge" of the Transition Machine parallel
d°mputer architecture by enabling program=
evelopment typical of general purpose Se-
Quencial computers.

ELIMINATED AND
COMBINED DATA
CONDITION LISTS

ASSEMBLY
LISTING

MULTI-STEP
0BJECT
OPTIMIZER

PLAV SOURCE
STATEMENTS
AND DIAGNOSTICS
® PACKAGES
© FUNCTIONS
® DECLARATIONS
PAVLOV
STATEMENTS
AND DIAGNOSTICS
©® PACKAGES
©® FUNCTIONS
©® DECLARATIONS
® WHEN BLOCKS
ERROR CONDITIONS
(DATA AND CONTROL- ”LECY
RUATIDRCE Tl
Figure 1: Parallel Software Development Support
System

SYSTEM OVERVIEW

The system provides analyses pertain-
ing to parallel program correctness in ad-
dition to its central role of translating/
compiling a typical structured language,
optimizing the result appropriate to a mul-
ti-tasking environment, emulating parallel
machine execution and generating code for
a target parallel machine. It is an assem-
bly line along which software, ultimately
to be run on the parallel machine, can be

developed.

software Development Process
The software development flow begins

with a source program employing commonly
used conventional language constructs.
These programs are translated into an in-
termediate source language more suited to
parallel realization of the program.

The intermediate language is charac-
terized by a situation/response control
structure that maps directly into the
structure supported by Transition Machine
architectures. It is a language based on
a model of parallel computation[2], and is

therefore applicable to parallel process-
ing generally. A gompller generates a set
1f tasks and associated task control data,
:hich together represent the source pro-
ram. An optimizer reduces the level of
gomplexity in the task contol data.

The task control data can be analyzed
to identify all race conditions (both data-
and control-related), compute the execu-
tion time for each task, and compute the
maximum number of tasks that can be elig-
ible at any one time.

An interpretive execution capability
is provided which is modelled after the
VAX 11/780 Pascal DEBUG program and pro-
vides interactive support to control the
interpretive execution process.

Limited code generation exists for
the Transition Machine, primarily useful
in initializing task control data.

A symbolic listing can be generated
at any point in the development flow.

Support System Design

The support software system shown in
figure 1 is written in Pascal and is host-
ed on Boeing's Microprocessor Development
Support Center's VAX 11/780. Every compo-
nent uses the recursive descent technique
described by Wirth[5), whose PLZERO compil -
er structure has been adapted to provide a
template for each of the various component
developments. The major computer program
components are the following:
- PLAV translator,
- Pavlov compiler,
Multi-step optimizer,
Static analysis program,
Object file output program,
Parallel machine emulator, and
- Target machine code generator.

The use of an intermediate source lan-
Juage and object file supports future lan-

Juage translation and machine retargetting
Tequirements .

~NOY U W N
PR D

PLav TRANSLATOR

tion?Fe PLAV translator converts conven-

On; Program structures into the situa-
ate lresp°nSG Structure of the intermedi-
flow l:nguage, Pavlov. It performs data
ing o alyses to establish a partial order-
they :ong the source statements, so that
tasgkg 't_be activated asynchronously as
tasks " (or e 2Ctivation situation for these
at Of "when blocks" as they are called

Stage) is specified in terms of
ar. O°f "data condition®. The two
‘biliti:Q the availabilities and update-
se! Ol parameters represented in the

sz‘meter' are defined as those
nt fealities associated with vari-
ta typz."’19nment statements or other da-
edeternlning Ooperations. Multiple
qultip) "tS to the same variable result in
diff°ree Parameters of the same name but
L instance number, e.g. A_l, A_2,

and A_3 would represent three successive
parameters associated with a variable, A

PLAV Syntax
PLAV syntax epitomizes capabilities
shared by several contemporary languages.

Abreviated Syntax diagrams shown in figure
2 are characterized as follows:

1. data structure types:
tor and matrix,

2. simple data types: integer and

scalar, vec-

real,

3. file types: sequential input and
output,

PACKAGE
| k
) i o T o
BLOCK
FILE file declaration *j
constant declaration
O %
—(%}_i variadble hchuuu‘,-]
FUNCTION FUNCTION BLOCK
i
N\
o/
FUNCTION BLOCK -‘:’»
l—@
STATEMENT

N of assigment

statement

Ll JJ

statement

write
atatement

(D)

Figure 2: PLAV Language Syntax

functions: single-valued, multiple

nts and ?
argue‘;e. statements: assignment, while_do,

, read and write.

4.

if then, for_do

i t Statement Translation
”SIgggintrol relationships among state-
AV programs are sequential un-
less otherwise indicat_ed by a control
tatement: 1f_then, while_do, or for_do.
;recedence among the when blocks in the re-
sulting pavlov program on the other hand
is determined by explicit reference to the
"ailability and updateability of refer-
enced or assigned parameter:::.

rThe appropriate partial ordering im-
osed on the when blocks associated with
assignment, Read ar'xd.W{n':e statements is
getermined by four e11g1b11§ty criteria:

1. An assigned (or written) parameter
gust be updateable,

2. All referenced (or read) parame-
ters must be availab;[e,

3. The "preceding" parameter (if any)
associated with an assigned variable must
be available, and

4. Any parameters whose assignment
references the preceding parameter must be
available.

Completion of an assignment statement
results in its corresponding parameter be-
ing made available and not updateable.

gents in PL

Logic Statement Translation

The automatic translation of logic
statements is more involved, and therefore
the concepts of hierarchy and the more rig-
orous theory of types[4] have been employ-
ed to deal with the complexity.

The elimination of GOTO statements as-
sures that when viewed at some level of ab-
straction, every conventional HOL program
can be visualized as a single sequence of
statements beginning at the top and conclu-
ding at the bottom. The significance of
this is that each statement as seen in
this higher level perspective can be trea-
ted as a set of parameter assignments ra-
ther than as a set of complex logic func-
;f_gns- "Ii'h1fs is shown in figure 3. Each

gram defined at a lower level is then
i'“teq in the same way until finally a
evel is reached at which all statements
are &;;ual assignments.
e decisi
fliow Chﬂrtc:isllfnbglzck inlatco;v?nttional
"valuator® ranslate nto an
"Signmenotr t\nr::xen block without a variable
-NC statement, but with the evalua-
u:g ;?glcal expression value (A<O0 in fig-
fons _SSigned to certain data condi-
#o otr':e:nd its negation (NOT A<O) assigned
figure 33;11'{'!1: complementation of A in
vhen blask ranslate into a separate
archy, yr 2f @ lower level in the hier-
truth of t will be a consequence of the
ability & data condition (an update-
assigneq A<()n this case) whose value is

c

A:-x A_l:. .
A<o H= A 3:= ABS(A 1)
>
—
b. Top level
a. Control flow :?g:ehtiﬂ

Figure 3: Typical Absolute Value Compu'tation

Even though A_3 in figure 3 is equal
to either X or -X depending on the sign of
X, A_3 belongs to a unique type since it
has a different range of values than A 1.
Whichever of the two possible relations ex-
i.st between X and A_3, a new parameter as-
signment has in effect taken place in crea-
tlng A_3. It is a value with unique prop-
erties. In this example, A 1 can be ei-
ther positive or negative, and A 3 has the
Efoperty of absolute values, i.e. posi-

ve.

In the original theor
it is clear that %ata typing {soi :oygzs‘[:;‘li
prehensive subject than can be solved by
merely declaring variables for once and al-
ways at the beginning of a program. A
unique type is required for a variable for
each instance in the program for which it
takes on a unique range of allowed values.
This includes not only each assignment of
the variable, but also each possibility
of such an assignment. 1In other words
the fact that the variable has satisfied a
test of being within a given range suf-
fices to enjoin an associated parameter
within the more restricted type just as
surely as if the variable had been assign-
ed a new value guaranteed to satisfy the
restrictions.

The automatic translation of control
constructs by the PLAV translator involves
parameter creation in accordance with this
concept of types even when no actual as-
signment may take place, as was shown in
figure 3 for the case when A_l is posi-
tive. Even though no assignment takes
place, the variable A changes in type as
indicated by its associated parameter
changing from A_1l to A_3. Therefore at
conclusion of either the evaluation block,
or the re-assignment block, shown in the
data flow diagram of figure 4, the avail-
ability of the absolute value of X 1is

guaranteed.

- AxeX
i MOT A 1P, A1AV:= TRUE;

m A 3_[', ‘_1_";

N
T 3 AV, A2 WPieA<O;
A3 UP, AZAV:® FALSE
EXD;
o A2 WP, LAY

Am -A
i W07 A2 WP, A2 AV, A3 AV:<TRUE

1,¢1;v

Figure 4: Translated Computation

The output of the PLAV translator is
included in figure 4. This is a Pavlov pro-
gram segment; the syntax will be explained
further on. Data condition naming conven-
tions should be obvious from the previous

discussion.
For_do statements are converted di-

rectly to a combination of while_do and as-
signment statements. While_do statements
are therefore the only looping construct
to be translated into Pavlov. An evaluat-
or when block results as it did for if
then statements, but this evaluator when
block will have two disjunctive activation

situations:
1. An initial activation occuring

when all referenced parameters are avail-
able and all generated parameters are up-

dateable, and
2. An activation occuring when all

consequent parameters become available.
Figure 5 illustrates the form of a

few itterative calculations with PLAV

source and an optimized data flow diagram.

PAVLOV COMPILER

The Pavlov language derives its name
f:om itg situation/response structure. It
applicable to rule-based systems and
parallel processing generally.
atio:‘he package, function and data declar-
sharedﬂ{ntax of PLAV shown in figure 2 is
and UPDA% Pavlov. Boolean AVAILABILITIES
808 fngt EABILITIES are added, however,
ure 2 w;ad of STATEMENT as shown in fig-
See figurEN BLOCK syntax is implemented.
ably stmif 6. The structure is recogniz-
allel cop ar to the abstract model of par-
.y'tems.[%?;ation called "named transition
2 "thep stat;m:::.primary difference being

When :illzck Processing

to be r::V1°V compiler generates tasks

There jgq & On parallel architectures.

tween tpe hone"to'one correspondence be-
when blocks of the Pavlov source

Figure 5: Translating

WHEN BLOCK

Computation Loops

condits
2 ‘MT

assignment
statement e CASSIGN

——@s——
__Og_J.

CASSIGN

(=

Figure 6: Pavlov Lang

program and result
ed task is compr
the when block:

J\DF

condition - Yogical
name condition

CASSIGN \
L (De—

uage Syntax Differences

ing tasks.

variable assignment statement, and the

"then" statement.

The when statemen

of data condition
for the associate
execution. Data
fied in a positi
of a conditio
statement,
be defined. Disj

tions may be spec

Each generat-

ised of three parts as is
The "when" statement, the

t specifies a list
s whose truth is required
d task to be eligible for
conditions must be speci-
ve sense; if the negation
n is required in the when
an opposing data condition must
unctive activation situa-
ified in a when state-

of which will activate the

gent ;an zt:uctufes are implemented this
. loo
task’ i t statement is
; assignmen
vaye The variable -like assignment state-

of pascal

compfisf,%n assignments being allowed to

iti ithout
nts, ta condition updates wit
mzcomn}odaf-: d\ayariable assignments. -
ess:tat;eg statement specifies the modi

e :o the status of certain data con-
gication s the result of executing the as-
gitions atask' There are fou_r possxble
gocia edions for a data condition: 1.
diSP°3“’ e, 2. forced false, 3. unaffect-
forcedd ‘u '¢orced to a value that depends

ed'th:nlogical relationship of variables.
on

. Progrﬂ‘gl?io;rinlity and data condition

TMkd?n:e dispositions are incorporat-
status uiask control data. The variable

inc9 nt statement and the ass%gr}ment of
assignme xpressions to data conditions are
1°9ic.'1 efor which instructions are gener-
f“"cuoni a pseudo machine. These repre-
ated fﬁ body of the task. A set of read,
sont ¢ ﬁd execute pointers are defined
"%te arovide a context for the task;
yhie s provide additional task control da-
these'm?e form of the resulting object file
ta.directly executable by the emulator and
i:anslatable for execution by the target

machine.

MULTI-STEP OPTIMI ZER

t programs resulting {:‘rom trans-
1ati<?:j::d guggequent compilation of con-
ventional HOL source programs may contain
excess task control information. For ex-
ample, there may be overly complex require-
ments specifications for the tasks, data
conditions declared and updated but not re-
quired by any task, or equivalent data con-
ditions, all but one redundant. Typically
also, access pointers will be duplicated.

The multi-step optimizer is concel:'ned
exclusively with task control optimiza-
tion, e.g. minimizing the number of (and
references to) data conditions. No at-
tempt has been made to optimize the pseudo
code comprising the tasks, although access
pointer storage has been minimized. The
optimization takes place in a number'of
separate phases or steps, each performing
a distinct function. The phases can be ap-
Plied in any order (and to varying
depths), The order of their application
affects only the efficiency of the optimiz-
tion, not the structure of the result.
However, the specified degree of optimiza-
tion affects the quality of the product.

Unnecessary Data Conditions

is A data condition is unnecessary if it

s tho 4 edUired by any task. In such cas-

it e data condition affects the eligibil-

g’ °f Do task and can therefore be delet-
* In figure 4, the data condition

A_2_AV is an unnecessary one. A 2 is the
parameter corresponding to minus X. But
since A will never be accessed in this capa-
city, A_2_AV is unnecessary. Such data
conditions, and all references to them,
are eliminated from task control data.

Equivalent Data Conditions

Two data conditions,always updated in
the same sense, represent the same informa-
tion. 1In this case the optimizer deletes
one of the data conditions, and substi-
tutes references to the other. Where dup-
lications are induced, subsequent reorgani-
zations eliminate them.

Combined Data Conditions

An uvpdateability data condition is in-
cluded for every when block. Its purpose
is to turn the task off once it has been
activated, precluding inappropriate contem-
poraneous activation by another processor.
Where an availability data condition is
also required exclusively by the task, it
could be used to provide this turn off
function. Negating its availability would
negate the eligibility of the task without
affecting the eligibility of others. 1In
such cases the updateability data condi-
tion is eliminated and the availability
data condition's role is extended to in-
clude that of the updateability.

Simplifying Requirements

The when statements specify situa-
tions under which task execution is appro-
priate in terms of referenced parameters
being available, etc.. Since certain para-
meters may involve certain others as prere-
quisites to their assignment, activation
situations are typically over-stated.
Therefore some data conditions in the re-

quirements list can be deleted without af-
fecting the partial-ordering of tasks.

In the first of two classes of over-
stated requirements shown in figuge 7, the
requirement for the data condition Cl by
task T3 can be eliminated because the re-
quirement for C2 insures 'rl,.'rz, and T3
will execute sequentially. Similarly, the

T T4
c1 c3 c5
5
ez c4
6

Figure 7: over-Determined Activation Requirements

) be eliminated since
requle girement for C4 guarantees the cor-

rement for C5 can

the ; of T4, T5, and T6 without
rect Ofgi:;:g that T6 require C5. At
necesS1 =" i her data condition that sup-
wturn off" ("not updateable")
st be found, however, before
ditions can be eliminated.

g the
tion mu
data con

AM ANALYZER
sTATIcS:tE;Rtofg analysis of task control data

the Pavlov compiler practical-
generate?dbeys an x-ray of the source pro-
¢ vstructure. It reveals race condi-
maximum and minimum task concur-

func
such

ificant States
List ;f’eSi)?:; to this analysis is a list of

AP gystem states that are reach-
i;gzlgig:natgizen initial :tate. Tlge num-
per of reachable states for a system ndu_ny
jo voxy JAEGe: U0 K0 B LoF e Gubask

na ’
‘§°2§;s:§§3es are actually reachable,
:nd of these, very few are pertinent to
s procedures.
Stau;rznn?lzgi' sptate a one-step reachable
gtate is one whichh can 1bie ;‘gill:egk:y ch:;
one of the elig e ta ‘

gtlxsx;i:gof one-step reachable states from a
given state is dependent on the numbers of
eligible tiasks and conditionally assigned

nditions.

data sgubset" states are defined to mini-
mize processing. State A being a subset
of state B implies A OR B is equivalent to
B. Since, therefore, every data condition
that is true in state A is also true in
state B, all tasks that are eligible in
state A will be eligible i.n stzlute ?, aBmd
race conditions in A will exist also in B.

A list of significant states is ob-
tained by examining all one-step reachable
states starting at the initial state de-
clared in the Pavlov program. Those
states which are not subsets of other
reachable states are retained. Sets of
concurrently eligible tasks are generated
during this process, as are the maximum
and minimum numbers of eligible tasks.

Race Conditions
" A system of tasks contains race condi-
1ons if the order of executing concurrent-
Y eligible tasks in the system affects
:“Y required computation. There are two
'g'l’t" of race conditions identified by the
" lc analysis: Data-related and control-
ated,

If a task assigns a contemporaneously

'?"’d variable, a data-related l:ace condi~-

on exists, If any data condition requir-
reses on¢ Of a set of concurrent tasks is

by any other of these tasks, a con-
trol-related race condition exits.

PARALLEL MACHINE EMULATOR

virtual stack machine process
ors -
ti-tasking executive mechanism, ar?zgs.n::tlu-

anism is the System Control
sition Machine atchitectures]:erul in Tran-

Interactive Commands
The operation of the emulator i
s -
trollled by operator commands entered inggg—
actively from the user terminal. This in-
terface is modelled after the VAX Pascal

debugger provided by DEC.
functions are supportegg The following

1. Examine the contents of variable
data conditions, registers, etc. 5

2. Deposit values into variables, da-
ta conditions, registers, etc.,

3. Watch any variable, data condi-
tion, register, etc., suspending execution
when modification is detected.

4. Set breakpoint at task entry,

5. List currently active tasks,

6. List currently eligible tasks,

7. Run the program,

8. Single-step the program one task
at a time, and

9. Trace the program's execution.

Virtual Machine Definition

The virtual machine being emulated is
comprised of three primary components:
The System Controller, the processor, and
the memory.

The main memory in the virtual mach-
ine is assumed accessible to both the Sys-
tem Controller and the individual proces-
sors. It contains the following informa-
tion:

1. A status vector of boolean indica-
tors used to maintain the status of all da-
ta conditions in the system.

2. A task control block array contain-
ing the lists of data conditions reguired
to activate each task; the access pointers
indicating read, write and execute authori-
zations; and update dispositions for data
conditions that result from each task.)

3. The pseudo machine 1nstructionsdas
sociated with the body of each task, an

4. Data storage for all declared con-

d variables.)

ltant: asnet of virtual processors is deﬁ:r
ed to interface with the System Contro

ignments and interpre-
o t“:he“pssegdo instructions gen-

execute ¥
:i‘;etleyd by the Pavlov coaui)il?: '.J::'ir Z;E-
tual processors have a simp o

internal registers %
::%tiu:; 't‘;n:ha System controller, perform

ing arithmetic operations, and for stack
storage.

gach pseudo @nstruction contains two
) an operation and an operand which
gields/ s a displacement into the access
1qt, Since there are no trans-
nof control or dirgct memory access in-

an application task is com-

tions : :
tt:gly cor'ltained by its access pointers
pletéil “the System controller.

set “,fl’w registers comprise the System Con-

oller's interface with each processor:
trolle’ fies an index into the task con-
other transfers data condi-
jues when they are determined by
logical expression assign-

virtual System Controller oper-

t.
The
e task contol data and data cond-

ates on th . .
jtion status vector. In effect it 1s a
multiprocessor executive handling event
relatonships exclusively.

EXAMPLE PROGRAM DEVELOPMENTS

rst step in the program develop-
ss is the translation of the
gource program by the PLAV translator. A
PLAV 1isting results, which if there were
errors present, would contain diagnostic
pessages in addition to the source pro-
gram. An example is shown in figure 8.
Notice that line numbers are included on

the listing.

The fi
ment proce

10 PACKAGE PRIMENTMEER;

20
300 TeIS IS AN EXAMPLE FROGRAM WEICH COMPUTES THE G
! WE . REAT
40 PRIME NUMBER LESS TWAN OR S2QUAL 70 N. THIS NUMBER IS 57231.

50 IN MAXPRIME ON COMPLZTIOS OF TEE FROGRAM. .

70
:3 BEGIN o PACKAGE \
::: CONSTANT TRUEVAL=1,PALSEZVAL=0;
m VARIABLE N,I,J,PRIMEPOUND,MAXPRIME
140 BEGIN TEMENT
150 Nie25; A ,
o

PRIMEPOUND : »PALSEVAL
::: VEILE PRINEPOOND=PALSEVAL DO
in BEGIN
i PRIMEPOUND : *TRUEVAL
n ro:rax-z 10 1/2 DO
£+ (1/3)*J = 1 THEN PRIMEPOUND EVAL
11 gbl'mnmo-rmmz. THEN n-x-i- K '
;:: gnm:-x

'

-+ ('snmn-:)

Figure 8: Example PLAV Program

the :r::;’llm’ program is also output by
b ke go ator if no errors are detected
lov progr‘:e- Each when block in the Pav-
the line numbzas a label corresponding to
statement :. r on the PLAV listing of the
block, Inw ich is implemented by the when
then staten the example program, the if
tvo when b1 ent on line 230 translates into
ig“r:c’;s labeled 230 and 231.
¢orrespondin provides a data flow diagram
ted py theg to the Pavlov program genera-
88sociateq PLAV translator. Each node is
Connectjp Yith a when block, each inter-
Ing 1ines gl dine a data condition. Incom=
¢d by the :hicate data conditions requir-
en block, outgoing lines data

ﬁ. 1)
l l‘ jw -: 3 o
I m
!m ""’j
_,’ sl
o
10| Il
5
u g
. o
S —)
—/
Figare 9: Data Flow Diagram of Example Pavlov Program

dated as the result of the
represent data
dotted lines

conditions up
when block. Solid lines
conditions that are set,
those which are reset.

the program

Following compilation,
can be optimized. AS shown in figure 10,

the result is a significant reduction in

the complexity of the associated data flow

diagram. optimization reduced the number
and when block

of data conditions by 12,
in this example.

requirements lists by 24
In general it has been observed that when
of between one

and two data con

tire system of tasks wil
1.5 times as many data conditions as there

are when blocks. These numbers apply to

i~

It is apparent that advanced avionics
app.lications will have much to gain by ex-
ploiting the benefits of parallel process-
ing. With software development support as
envisioned here, many of the obstacles
will have been removed.

BIBLIOGRAPHY

[1] Anastas, M. S. and Vaughan, R. F., "A
Prototype Parallel Computer Architec-
ture for Advanced Avionics Applica-
tions." Proc. of NAECON '82. May
1982

Keller, R. M., "Formal Verification of
Parallel Programs." Comm. ACM 19,7
July 1976

Vaughan, R. F. and Anastas, M. S.,
"Microprocessor Based Transition Mach-
ines." Proc. of COMPCON FALL '79.
Sept. 1979

[4) Whitehead, A.N. and Russell, B., "The

Theory of Logical Types." Principia
Mathematica, Cambridge, London 1967

[5)] Wirth, N., Algorithms + Data = Pro-
rams, Prentice Hall, Englewood
Cliffs, New Jersey 1976

. Figure 10: Data Flow Diagram of Optimized
Example Program

optimized programs, and seem to be rela-
tively insensitive to task concurrency.
x Programs can then be run on the emula-
Or to validate their execution prior to
generating code for the target machine.

CONCLUSIONS

B ;l‘he parallel software development sys-
Produgta Precursor rather than a finished
" Nost It is felt however that many of
sed | difficult issues have been addres-
{s flz I.his development, and the approach
Xible to modifications in either the

Sour
deug?_ language syntax or target machine

