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Replacing Point Particles with Electric and Gravitational 
Charge Distributions 

 
Solution of the Poisson equation appropriate to an amount of charge in free space when the proper 
boundary condition is imposed at the origin as well as at infinity results in unique expressions for 
the charge density, total charge, potential, and field strength. 
 
implied alternative constructs 

Here we list the expressions for all of the associated theoretical constructs that result from the 
alternative solution.  
 
r(r)  =  e-a/r           q(r) = qo e-a/r 
 
V(r)  =  qo ( 1  -  e-a/r ) / a                         E(r) = qo e-a/r/ r2 

 
These all involve the inverted exponential factor, which has not been present in electrostatic 

and gravitational theoretical expressions to date.  We will provide graphic illustrations of each.  It 
is instructive to consider the extent to which this inverted exponential factor constrains the various 
constructs.  As we will see, the behavior of these constructs in the vicinity of r = a is very different 
than their behavior at larger as well as at smaller distances from the center of charge.  It is 
instructive to consider the magnitude of this factor for various values of r/a. 

 
range minimum factor maximum 
 

if r/a > 1000  0.999  <  e-a/r  <  1.0   
 

if r/a > 100 0.99  <  e-a/r  <  1.0  
 

if r/a > 10 0.90  <  e-a/r  <  1.0 
 

if r/a = 1 0.3679  =  e-a/r  =  0.3679   
 

if r/a < 1 /2 0.00  <  e-a/r  <  0.1353,  
 

if r/a < 1 /5  0.00  <  e-a/r  <  0.00674  
 

if r/a < 1 /7 0.00  <  e-a/r  <  0.0009  
 

if r/a < 1 /10 0.00  <  e-a/r  <  0.0000454 
 

if r/a < 1 /20 0.00  <  e-a/r  <  2.061 x 10-9 
 

if r/a < 1 /100 0.00  <  e-a/r  <  3.72 x 10-44 
 
All of the above analyses are compatible with all theoretical considerations and experimental 

results.  It has consistent application to fundamental particles.  In addition to an escape from the 
necessity of ‘point’ particles and the associated singularities, we will show that the revised 
expression for the potential actually accommodates the formulation of classical electrostatics (as 
well as gravity) without endorsing action-at-a-distance that has been suspect since its inception.  



 
 
 
 
 
 
 
 x x2 x3 x4 

1! 2! 3! 4! 

 1 / r a / r2 a2 / r3 a3 / r4 
  1!   2!   3!   4! 

This feature derives from the nature of option 3 above for which there is no distance dependence 
of the potential, leaving only the amount of charge at the distance as determining the potential and 
therefor the experimentally observable force.  The gradient in the derivation above can now be 
taken without compunction to evaluate both the potential and charge density at the same locations 
throughout space including the boundaries at the origin and at infinity as we will demonstrate. 

 
implied difference in the conjectured potential  

How closely the alternative potential field can be characterized as the inverse of the separation 
of one charge from another is significant.  The form that was accepted (albeit without experimental 
verification at the submicroscopic level applicable to fundamental particles) for centuries is shown 
as the upper curve in figure 1.1.  The figure provides log plots of the two alternative forms for the 
potential.  When applied to the charges of up and down quarks the new conjecture, shown below 
the traditionally accepted form becomes virtually indistinguishable at distances greater than 10-14 
cm.  By extending the domain of the plot out to a distance of 10-8 cm in the log plot of figure 1.2, 
we see that there is virtually no difference at all due to this change in hypothesis.   
 

qo = 1.0 and 
a = (1.405 x 10-14 cm 
 

 V(r)  =  qo / r 
 

 

 
   10-13 r (in cm) à 
 
 
 

 V(r)  =  qo ( 1 - e- a / r ) / a 
 

 
 

Figure 1.1:  Potential as a function of radial distance of a distribution ( for r < 2 x 10�13 cm ) 
 

It is through the polynomial expansion of the exponential that we find agreement with the 
conventional theory.  The series expansion of an exponential is given by the following:  

 
e-x = 1 -  +  -  +  -  · · · 
 
Thus, we arrive at an approximation for V(r) appropriate whenever r2 is appreciably greater than 
a as follows: 
 
V(r) =  qo {  -  -  +  -  · · · } 
 



 

The significance of this alternative is that it completely avoids singularities.  The charge/mass 
previously embodied in ‘point’ particles can now legitimately be associated with continuous 
distributions of charge/mass instead.  
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qo = 1.0 and 
ao = (1.405 x 10-14 cm 

 
 V(r)  =  qo / r 

 
 V(r)  =  qo ( 1 - e- a / r ) / a 
 

    
 
 

 

 
Figure 1.2:  Log of potential as a function of radial distance of a distribution (for r < 1 x 10-8 

cm ) 
 

erroneous conventional wisdom 
Although in experimental agreement, what we have demonstrated is at considerable odds with 

conventional wisdom.  We know there is a traditionally-accepted explicit dependence of the 
potential on distance, based upon the assumption of point charges, which is: 

 
V(r) = qi / | r – ri |  
  i 
It even makes sense to speak of such an ensemble of charges in terms of a ‘continuous function’ 
q(r).  It is comprized of indivisible point particles with the gradient zero everywhere except at 
‘points’ given by ri where that value is infinite.  Thus, for a single indivisible particle the assumed 
potential has been: 
 
V(ri) = qi / ri, for ri > 0. 
 
here qi is the total charge of one indivisible point particle.  This is illustrated in figure 1.3, where 
the particle is assumed to be located at the origin so that ri = ( xi2 + yi2 + zi2 )½.  The plot avoids the 
origin where the point particle is located because the value of V(r) is infinite at that point.  (Notice 
that y only ranges from 1 (not zero) to 10 in the plot.)   The potential is specified for a location that 
is removed a distance ri from the particle in the above expression.  It has no bearing whatsoever 
on anything physical at the location ri.  The potential in this case expresses merely a geometrical 
relation between the source of the action at the origin and action that takes place at the location r, 
i.e., it assumes action-at-a-distance. 
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Figure 1.3:  Potential as conventionally conceived 
 
In this previously accepted approach the charge is all concentrated at the single point at the 

origin where it possesses an infinite value, but whose ‘encapsulated’ charge about the origin is qi 
as shown in figure 1.4.  Clearly the Dirac delta function is required to shore up the mathematics of 
this approach.  Discussions of the delta function predominate in introductions to the treatment of 
electrostatics and gravitation because without justification for how the discontinuities are to be 
handled, the theory would be invalid. 
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Figure 1.4:  Conventionally conceived charge concentration 
 



alternative conjecture in the current investigation  
The conjecture we have introduced involves particles comprized of continuous charge densities 

such that the accumulated charge, q(r) is a continuous differentiable function.  In this case the 
potential associated with the particle is related to encapsulted charge as: 

 
V(r) = ( qo – q(r) ) / a 
 

Here both qo and a are constants defining the indivisible charge density.  This potential is 
illustrated in figure 1.5.  So in this approach the solution to the Poisson differential equation is: 
 
q(r) = qo e-a/r 
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Figure 1.5:  Potential, ( q – q(r) ) / a in the current conjecture  
 
Figure 1.6 illustrates the charge density; the potential, charge density, and all other constructs are 
spherically symmetric about the center of the particle.  The total charge out to a given radius and 
the field strength are illustrated in figures 1.7 and 1.8. 
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Figure 1.6:  Charge density in the current conjecture 
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Figure 1,7:  Total charge in a sphere of radius r  
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Figure 1.8:  The electric field strength (force) at a distance r from the center of the distribution 

in the current conjecture 
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the intersection of electricity and gravitation 
We have associated these two properties of particles as integrally related by insisting on 

equivalence of rest mass and electrostatic self-energy.  The Poisson distribution is the only viable 
distribution of charge throughout all space that implies a precise quantity of each property while 
meeting reasonable boundary conditions at the origin and at infinity.  But our treatment so far has 
focused on the electrostatic aspect of the particle and not gravitational.  In addition to attributing 
mass to electrostatic self-energy, we assume that the mass of any object in and of itself is associated 
with a gravitational force field of a similar form to that of the electrostatic force.  

 To warrant common treatment with the Poisson equation, requires further consideration of the 
unilaterally attractive nature of gravity.  One approach is to assume two separate force fields 
surrounding basic particles, one electrostatic, the other gravitational.  Another approach would be 
for gravitation to be a residual aspect of the electric field observable only when electrical forces 
are neutralized.  The differences will in retrospect seem to be a distinction hardly worth mentioning. 

The Poisson equation used in the derivation of the distribution of charge is universally accepted 
as applying equally to gravitation.  We make no excuses for the approach we applied in the 
previous chapter nor to applying it now to gravitation.  What remains to explain is how does this 
approach pertain to ‘mass’ as equivalent to the self-energy of electrical charge, what is the 
gravitational charge Ö G m, and how does that contribute to the indivisibility of particles? 

 
gravitational enforcement of indivisibility 

The form of the Poisson distribution of charge with its implied charge-related self-energy 
applies also to the distribution of associated gravitational mass whose force field may cancel the 
electrostatic field near the origin but leaves it essentially unaltered at appreciable distances.  That 
is the reason that fundamental charge distributions are indivisible and act simply as particles. 

While it is impressive that the negative energy in the gravitational field could cancel that of the 
electrostatic field whose self-energy is the basis for there being any mass at all to contribute to 
gravitation, variance of the gravitational charge distribution need not be that small to effect 
indivisibility.  Any value less than the electrostatic variation would suffice to produce indivisibility.  
In any case, the magnitude of that gravitational field is miniscule by comparison to the value of the 
electrostatic field at all distances for which net charge is appreciable.  In figure 2.3 we illustrate 
the comparison of the force field strengths for qm much less that qe and for various values of am 
less than ae none of which are anywhere near as small as those that are actuality realized. 

Notice that there is a pivotal distance at which the shorter-range gravitational force exceeds the 
electrical force.  To illustrate this more fully requires the use of log scale plots of the absolute 
values of the respective forces.  In figure 2.4 we illustrate domains of significant influence of 
gravitational cohesion and electrostatic repulsion forces for properties that we associate with up 
and down quarks.  These properties as are follows: 

 
Gravitational charge of the down quark:  2.6113583 x 10-32  
Gravitational variance of the down quark:  3.6349321 x 10-17 
Gravitational charge of the up quark:  2.2472527 x 10-28 
Gravitational variance of the up quark:  1.6895847 x 10-20 
 

This hypothetical alternative of the gravitational variance of the up and down quarks assumes that 
am = Ö G ac.  It avoids the ineffectuality of am = ac as well as the perhaps too extreme binding of 
a second hypothetical alternative we will consider where am = Ö G (m / q) ac.   



 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.3: Combined electrostatic and gravitational forces 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.4: Combined electrostatic and gravitational forces of up and down quarks with the 
difference in variance between electrical and gravitational field variances being Ö G 

 
The rationale for one or the other (or a third) alternative for the gravitational variance centers 
around the matching the observed ability of quarks to combine without absorption into single 
Poisson distributions.   
 


