CHAPTER FOUR

The Switching Circuits Used in Digital Camputers

"Off again, on again, gone again,
Finnigin. —"g Gilljlan (?)

w__.One if by land, and two, if by sea;

And I on the opposite shore will be,

Ready to ride and spread the alarm..."
H. W. Longfellow (lxxx-lxxx)

"ILogic is the art of convincing us of
same truth.™ 5 pruyere (1645-1696)

"... convert them into quantitative
symbols, susceptible only to the values

iRl 1. George Boole (18xx-lxxx)
"Two is campany, three is a crowd."

T. Fuller (1608-1661)

Whereas we looked downward in chapter 2 from the more
comprehensive to the simpler camponents, developments have
necessarily proceeded in the opposite direction, i.e.
"bottam up." Most of the major breakthroughs in computing
have actually involved the very bottam level, i.e. whether
switching circuits were implemented using electramechanical
relays, vacuum tubes, discrete transistors or with various
levels of integrated circuits. To talk about these
developments in a meaningful way, we must first be able to
talk about switching circuits. Fortunately, in contrast to
analog circuits, switching circuit concepts are easy to
understand.

We will’digr&ss in this chapter therefore to discuss

switching circuits. our discussions have brought us to the

-57-

phase of historical development where switching circuits

began to play a major role in computer history.
ELECTRICAL SWITCHES

Switching circuits are electrical circuits with
switches in them like the one in the table lamp in your
living roamn. (We will take licence to treat the electrical
power coming through a wall socket as though it were direct
rather than alternating current. The power supply in
a camputer performs this conversion.) The switch in such a
circuit provides control over the electric current and
voltage that flows to the light bulb so that there will only
be power for the light when the switch is "on" as shown in

figure 4.1. In this diagram there is voltage at the switch

%/\"

Voltage = "1" o OUTPUT

Figure 4.1: Architype "Switching Circuit"

whenever the circuit is plugged in, but there will only be a
non-zero voltage at the OUT§UT (the light bulb) if the
switch labelled "A" is in the "on" position. The light is
an indication of whether the switch is open ar closed. If

we consider the voltage at the switch as being 1.0 Volts,

-58-

then the voltage at the light will be either 1.0 ar 0.0
Volts. But since we are only interested in voltage in the
sense of its being "on" or "off" rather than its precise
numerical value, there are other equivalent ways of
considering voltages in switching circuits. We can for
example consider the value of OUTPUT as the truth or

falsehood of the assertion:

"THE SWITCH IS ON!"

In this case OUTPUT and A are called "logical variables"

whose values are either TRUE or FALSE, depending on the

switch setting. 'k_ % %A:f %

ML,
ENCODING SWITCHES WITH MEANING

Encoding on/off switches with true/false information
was not new; Paul Revere would have been a natural at
digital design. On or off indications are used in much the
same way in digital computers as he applied them in his
famous ride. His use of "one if by land, and two, if by
sea" rather than "zero and one" provided for guaranteed
synchronization and failure detection. This required an

extra switch (two lamps) but it included an extra "bit" to
provide fault tolerance!

-59-

In camputers switches control voltages which affect

lights or other devices which collectively provide the

information which is the ultimate implication of flipping
the particular switches. Setting switches need not involve
toggleing switches manually, however, although in the early
days of computing it meant just that. Nowadays, when you
type a character on a keyboard for example, the keyboard
electronics will set eight "switches" as a coded indication
of which key was depressed. Typing the capital letter, "A"
for example, will typically result in the second and eighth
of these switches being turned "on" or "IRUE," the other six
will be set to "off" or "FALSE." (In the old days one might
have flipped the eight switches to the right code and then
toggled a ninth one to indicate that the switches now have
meaning.) As the computer processes the fact that you typed
an "A," it will set and reset a series of "internal"
switches on its own in coming to a conclusion based on your
having typed an "A."

Yes, computers flip switches too! Camputer history
would be short indeed if their switching circuits were all
controlled manually. The implications of your having typed
"A" may be far reaching within the camputer, a cascading of
millions of switches being toggled before the computer
responds a second later. But before we discuss how combined
switch settings can be used to effect complex camputations,
let's discuss the methods that computers use in turning
their own circuits on and off,

-60-

RELAYS

We have mentioned electramechanical devices that employ
electricity to move magnets which in turn trip levers which
effect 'same mechanical function, even like flipping a
switch. Switches that are controlled by such means are
called electramagnetic "relays." The Z2, Z3 and Z4 and MARK
I were implemented using relays, but since then vacuum tubes
and transistors have became much more effective in terms of
cost, speed, size, power and reliability. But the function
being. performed is the same and in fact hydraulic switches
have even been shown to work. Since relays accamplished the
function by the physical movement of a switch very much like
using your finger, their operation is easy to understand.
Far this reason (as well as historical chronology) we will
discuss switching circuits fram this viewpoint. The few
essential differences when vacuum tubes and transistors are
employed are discussed when those .devices are introduced.

In figure 4.2(a) the essentials of a circuit like the
one in figure 4.1 are shown, but with the addition of an
electromagnet (the coil of wire with a movable magnetic core
indicated by the dark bar) to provide control of the switch.
Elecrical components and the power supply are chosen to
guarantee that compatibility relations hold such that when
one volt is applied at A, the electramagnet will be

activated and the switch will open by magnetic attraction.

-6]1-

S1LEsvValt OUTPUT A OUTPUT
B s —\..——_—-.
A

- (b) Standard "NOT
(a) Inverter gate" Symbol
Circuit

Figure 4.2: Electramagnetic Relay Switch

OUTPUT will change voltage from "1" to "0". If the applied
\{oltage at A is "0", then the switch will relax to its
closed position and the OUTPUT will be "1".

Such a device is called a "gate." (The suitability of
this name should be apparent by inspecting its "opening" and

"closing" features in the figure.)

STANDARD LOGIC GATES

The OUTPUT voltage in the particular switch that is
shown in figure 4.2(a) always takes on the opposite
characteristics to that of the switch voltage, A. This
circuit is sametimes referred to as an "inverter circuit"
for this reason. It is more commonly called a "NOT gate,"
however, for which the special symbol shown in figure 4.2(b)

is used. This opposition of A and QUTPUT are expressed as:

OUTPUT = NOT A

This is easy to understand if you think of A as the truth or

falsehood of an assertion, such as, "John F. Kennedy died of

o1

old age!" If OUIPUT is the truth or falsehood of a directly

opposing asse'rtion such as, "John F. Kennedy was .
assassinated," thén clearly for A and OUTPUT the above
relationship holds. Both statements cannot‘ be true or false
at the same time. When we "assert OUTPUT" for example, we
can be stating a truth or a falsehood; which can be
deteﬁnined by its relationship to other statements whose
truth or falsehood we know. It is a matter of logic, hense
the name "logic circuits" and ™logic gates."

In the NOT and subsequent standard gate symbols, the
input power ("1" Volt in all our examples) is amitted.
Electrical power and the incidental requirements for
resistors and capacitors become underlying assumptions which
are not typically shown explicitly in logic diagrams
employing such standard gate symbols.

A different switch implementation for which the gate
remains open when A=0, can be used to create extremely
useful logic circuits when replicated in series. This
combination of switches is shown in figure 4.3(a); it is an
"AND gate". In the figure, the relays have been stylized,
but they assume the same basic electrcmec}{ani_ca‘];
implementation as shown in figure 4.2(a). Canb;'.nations of
switches as shown require that all of the.swi.tches be closed
for OUTPUT to obtain voltage. In this cas-e we can say
OUTPUT = TRUE if and only if all switches "are_ ciosed, which
is characterized by A=TRUE and B=TRUE and C--'IRUE. This is

the same as saying:

-63-

nyn.
Volt OUTPUT OUTPUT

s
A B c (b) Standard "AND

gate" Circuit

Figure 4.3: (a) Conjunction of Switches
OUTPUT = A AND B &ND C

where it is understood that A, B and C are logical
variables, i.e. the truth or falsehood of assertions like
those we used in describing the previous gate. If A stands
for the assertion, "the creature is._ breen," B for the
assertion, "it has a hard shell," a:nd C for, "it walks
slowly on four legs," then OUTPUT ;;an be the statement, "the
creature is a turtle!" If any of 'Athe statements A, B and C
are not all true, then the creature is not a turtle! The
standard symbol for an "AND gate" is shown in figure 4.3(b).
In figure 4.4(a) another useful combination of switches

is shown which performs the logical function known as "OR".

"1" Volt ¢
—— A OUTPUT
A
o B
OUTPUT
2t LS
o (b) Standard "OR
gate" Circuit
c e
L

Figure 4.4: (a) Switches Representing A OR B (R C
..64_

In this case: OUTPUT = TRUE if and only if at least one of
the switches is closed (on, or TRUE), i.e. A=TIRUE or B=TRUE

or C=TRUE. You can think of examples to express as:

OUIPUT = AOR B R C

The standard "OR gate symbol is shown in figure 4.4(b).

In figure 4.5 we show a graph of logical variables A, B
and C as well as NOT A, A AND BAND C, and A OR B OR C. The
graph is an example of a timing diagram like those used in
designing digital logic circuits for computers. Each has

two possible values, high/low, true/false, cne/zero, etc..

THEORETICAL BASIS OF DIGITAL COMPUTERS

All this would not be very significant if it were not
for the provable fact that all mathematical expressions can
be reduced to equivalent combinations of the operations NOT,

AND and CR operating on logical variables whose values are

$ 4R L
| 1
" { i - >
\ { f ; : .
{ i\ . !
| NOT A 1 e .' ,
i !
A AND B AND C s :_
cranssre ol .
! AGRBRC g }‘
) ' time --->

Figure 4.5: Timing Diagram Illustrating Relationship
Between Logical Variables and Functions

-65-

simply TRUE or FALSE. This implies of course that any
computation can be reduced to digital logic using switching
circuits no more sophisticated than those which we have
described. This is the ultimate theoretical basis of
digital computers!

Lord Bertrand Russell and Alfred North whitehead proved
this in their monumental treatise: Principia Mathematica
in 1910. This work which Russell describes as having caused
him an "intellectual hernia," summed up the study of logic
introduced criginally by George Boole in his "An
Investigation of the Laws of Thought on Which ars Founded
the Mathematical Theories of Logic and Probability"
published in 1847. Boolean algebra derived its name fram
Boole, who introduced among other notations, the use of
"Truth Tables". Truth tables make it easy to evaluate the
possibilities of logic functions as shown for OUTPUT = NOT

A, OUTPUT = A AND B and OUTPUT = A OR B below:

Logical AND Logical COR Logical NOT
A ‘ B [OUTPUT A ‘ B ' OUTPUT A ; OUTPUT
: ! . .

OBi=0 0 0t1o0 0 0 1
011 0 01 1 1 0
1}0 0 140 1
bl it 111 1

These three tables contain the basic postulates of
Boolean algebra. Here, and generally, a 0 is used to mean

FALSE and 1 is used to mean TRUE.

-66—

In 1938 Claude Shannon explained the application of
Boolean algebra to the design of digital logic circuits.
Actually, not all three of the NOT, AND and CR functions are
| required to implement any conceivable mathematical

expression. The NOT operation in conjﬁnction with either
the AND or the (R operation are sufficient in themselves to
implement any computation. This gives rise to a more
efficient set of standardized gates, the NAND and NOR gates

which stand respectively for NOT-AND and NOT-CR as follows:
A NAND B = NOT (A AND B)
ANOR B=NOT (AR B)

In figure 4.6, the composite and standard symbols for

the NAND and NOR gates are shcwn.

A : A 1
S ——— | \ i o m ey A NAND B
AND ‘ 0 B NAND
ﬁ
B o I—J
A A
A NOR B
B \.l
(a) Camposite (b) Standard

Figure 4.6: Symbols for NAND and NOR Gates
-67 -

THE APPLICATION OF THE THEORY

The use of logic gates to implement storage for numeric
values and the circuits which perform arithmetic on these
values is the essential firs£ step in computer development.
The standard gate symbols that we have introduced can be
used to design a flip-flop as shown in figure 4.7. The

simple RS flip-flop (the RS stands for Reset/Set) involves

wn

T

NOR O
®~ Feedback loops
—s =
Q
NOR -

R

Figure 4.7: RS Flip-Flop Made Fram NOR Gates

two NOR gates although two NAND gates with a couple of NOT
gates could have been used instead. In the figure, if S is

set (to 1) and R is reset (to 0), then Q will remain set and

0 reset. (The bar over the Q stands for NOT Q). It remains

this way until R is set and S reset. The flip-flop
remembers whether S or R was set last; it is the basic

storage unit of computer memories,

The use of flip-flops to store and retrieve data
requires additional logic if more than a single logical

variable is to be stored in the entire system. For one

thing there must be some designation of which stored

variable is being referred to. This means that there must

Pe a unique "address control line" for each stored variable

which acts like the key for a locker. when the address

-64-—. _
control line is set, then the gllp—tlop value can be changed

by W and W (this operation is called "Write") or its value
can be determined by R and R (this operation is called
"Read"). This is shown in figure 4.8, where the RS Flip

Flop is just the circuit shown in figure 4.7. Now whenever

Address sellect line

Figure 4.8: The Basic Memory Unit of Digital Camputers

it is desired to Read or Write the value of any stored
logical variable, the value of Wand W must be set up
appropriately before, or the values of R and R determined
after, having set the designated address control line for
the variable.

So, by combining groups of these basic memory units,
extensive memories can be éonst.ructed to retain coded
information. With NAND or NOR gates, "address decoders" can
also be constructed from which finally one can develop the
logic to set the appropriate address sellect line for each
stored variable. The entire scheme discussed in reference

-69-

to figure 2.6 can then be developed as we will see a little
further on. But before this can become completely clear
however, the coding scheme for information stored and

manipulated by these devices must be discussed.

BINARY NUMBERS

The theoretical fact mentioned earlier, to the effect
that, "logic and logical variables are sufficient to
implement any computation," has to leave one wondering about
practical aspects. How does one represent every day numbers
with "logical variables" since they do not seem as directly
ammenable to logical treatment as, "the creature is green
and walks slowly!" The answer, as we will see, is, "In
binary!"

Let's go back to lamp switches! In figure 4.9 there

are four ordinary switches drawn. You nctice that each of

R 4 b]

b ;b \ﬁ; ! Number Represented
3 | EE; Lioes Oi:?‘ T 1
17'3%’

2342l 401

Figure 4.9: Switch Settings to Represent Numbers

the switches can be up or down (2 positions for each) so
that there are a total of 2 x 2 x 2 x 2 = 24 = 16 possible
combinations for the four switches. (If you doubt this, you
can very easily try all the combinations and count them.)

We can therefore code the switches to represent the numbers
0 to 15 (or any other sixteen numbers) any way we want to.

Being familiar with decimal notation predjudices us however

in favor of a positional notation wherein each switch has a

smaller value than the one to its left., If we give our four
switches the names: bO' by, by, and by starting at

the right, we can consider each to be a sort of digit.

These "digits" will be logical variables howevér, with 0 and
1 (rather that 0 to 9) representing their range of possible
values. Then the value, N of the number represented by our
switch setting is:
N=>b x23 +8b x22 + b

3 2 1

8 b3 + 4 b2 +r2 bl . bO

In the example of figure 4.9, N = 8x1 + 4x0 + 2x1 + 1 = 11.

s
X2~ \+ b0x2

0

The four switches in this case represent the number eleven.
The coding scheme that we have defined is not original!
It is the "binary number system" known to the ancient
chinese, investigated by Liebnitz, implemented in the "zZ"
series computers by Zuse and finally suggested to us by von
Neumann. You can see how ideally binary numbers are suited
to switching circuits in particular and digital computers in

general.

The following table shows the coding scheme for each of

the sixteen possible switch settings. Remember 0 is "off"

BINARY DECIMAL BINARY DECIMAL
0000 0 1000 8
0001 1 1001 9
0010 2 1010 10
0011 3 1011 11
0100 4 1100 12
0101 5 1101 13
0110 6 1110 14
011l 7)L 15

or "down", and 1 is "on" or "up" so in the "BINARY" column,

the four bits form an image of the particular setting of the

switches shown:in figure 4.9.

BINARY ARITHMETIC

There are same more questions to be answered before the
theoretical proofs of Principia Mathematica can have
practical significance. For example, how are logic
opverations like those that we implemented with relays able
to perform arithmetic operations on numbers coded into
switch settings according to this scheme? To answer this
question, let's first look at what it means to add two
binary numbers. Since in decimal 1+1=2, we must have that
0001+0001%0010 in binary. If you try a few examples of such
reasonable expectations using the table above, you'll notice
that whenever a sum of "bits" exceeds one, we must carry
values in excess of 1 to the left. This is what we're used
to except that carry occurs when a digit exceeds 9 in

decimal.
DIGITAL ELECTRONIC ADDING MACHINES

A "single bit adder" takes two input signals, A and B
and interprets their voltage values as a bit in a binary
sequence representing a number. The logic designed into the

adder is shown in figure 4.10. The performance of this

-72-

(carry kit)

Figure 4.10: Logic Design of Single Bit Adder

single bit addition unit is what you would expect fram such
a function. The result involves two bits rather than just
cne, like when you add single digits 7 and 6 to get a two
digit result, 13. The results are as described in the

following truth table:

TRUTH EUR SINGLE BIT ADDER
aj)B| C c; | | A+B | decimal
oyo}lo 0 0 {=0
gl o 1 01 { =1
TujrOW)i0 - 01 §=1

g PO LA L 0 101 = 2

Arithmetic performed by the Arithmetic Iogic Unit of a
digital computer involves primarily combinations of single
bit adders like the one shown above which involves about

three gates.

-73-

,waw/(o110
W%{%Mloo(cw;gwooo,u
W $oto, WM (/MTLMMWW

R “ UK M&%}J ”MM’/A
You no doubt remember from Wft_/(ée school that ra exbm

0000
an subtracting, you could instead add the negative of the

a b
=5+ (-3). This wasn't m

it is in fact how subtraction is performed. This involves

"complementing" the individual bits in the binary subtrahend

and adding. %ultiplication also is performed by addition

with shifting just as you learned in grade school. Division
Blge, since it involves sequences of subtraction, can be
implemented with binary adders combined in a logical

structure as well.

HIERARCHICAL CESIGN

We will discuss how combinational logic can be used in
a hierarchy to easily implement the major functions of
digital computers discussed in chapter 2. Single bit
memories and adders can be combined by simple design
techniques to achieve the tremendous capabilities currently
typical of these devices. Digital computers involve two
major components whose design will be discussed: Memories
and central processing units.

We'll look first at the Arithmetic Logic Unit, one of
whose major components is the adder. Then we'll look at
what is involved in the storage devices employed by digital

computers.

ARITHMETIC LOGIC CIRCUITS

we've already looked at single bit adders, so now lets
consider the design of an adder which adds two 4-bit numbers
like the ones shown in figure 4.9. Rather than designing a
4-bit adder fram "scratch," a designer would select a single
bit adder like the one shown in figure 4.10 as a basic
component of his design and proceed fram there. Having
solved the single bit addition problem once, he would not
worry about how each separate bit position in the 4-bit
numbers gets added. He would concentrate rather on the
carry operation, arranging his components to effect it
properly as shown in figure 4.11. 1In this adder there are

2odn Iaoe Rz 1BA)
thirteen components, 10 single bit a dersAand 3 (R gates.
But each of these components are constructed fram many
switches, i.e. the (R gates each require 2 switches, and the
single bit adders each require three gates and a total of 8
switches. So altogether there are 86 switches required to
perform a 4-bit addition.

An 8-bit adder can be constructed fram seven
canponents: Two 4-bit adders, four single bit adders and
one (R gate, requiring a total of 206 switches. Figure 4.12
illustrates the design which uses the components defined in
figures 4.11, 4.10, 4.6, 4.4, 4.3 and 4.2 in a complete |
hierarchy. In the figure we have used solid arrows to
indicate multiple bit interfaces; this symbology is used for

-75-

(overflow)

—

LEGEND: C=A+B, where A {a,,a,,a4,an}
3r 2L 50

B {b3,b2,bl,b0}

=L {c=CrCCrt

Rre2t =110

\ .
Figure 4.‘9': Four-bit Adder (Using Single Bit Adders and CR Gates)

)

overflow

[

8-bit st

8-bit addend .

z

Figure 4.11: 8-Bit Adder Implementation

—76.—

npusses," applicable when each bit is used in an orderly
fashion which does not necessitate an elaboration of each
bit interconnection.

To perform a sixteen bit addition which is typical of
integer arithmetic supported by current machines, involves
the use of eleven components with a total of 478 switches.
This then is the adder which is one of the several major

components of an Arithmetic Logic Unit.
DIGITAL ELECTRONIC STORAGE DEVICES

The property of computers that separates them from
calculators is that they have memory. We have mentioned the
significance of flip-flops as being able to store a single
logical variable, and shown a design which would accommodate
the storage of a single bit in a binary number. Binary
numbers involve concatenated bit sequences so that in order
to store an entire number, there must be a way of combining
a set of flip-flops as a unit and a way of distinguishing
between these defined units to allow access to one rather
than another location of memory. These requirements involve
the organization of bit storage in a two-dimensional array;
its extent in each direction comprizes the "word length" and
"number of words" of memory. In addition there is the
requirement for an "address decoder" which can use a numeric

value to determine which address select line to activate.

=77~

MEMCRY REGISTERS

The organization of logic circuits like the one shown
in figure 4.8 to effect storage for a set of switch

indications representing a four-bit number is shown in

figure 4.13.

Address select line

§ PRI Eye P
b‘ b b b'r——’
3 2:._] Lipynd £ 0 3=y 4
Wi IR! Wl IR lwg RI {w! IR!
OG0 1 0 108 1.0 10

Figure 4.13: Single Four-Bit Register (or word) of Memory

Such concatenated bits are usually referred to as
"registers" or "words" of memory. You will notice that each
bit in a word responds to the same address select line; this
enables the entire set of four bits to all be activated at
the same time as a single unit. Each bit can be set by
activating the appropriate WRITE line. (The 1 and 0
associated with each W are used to indicate the set and
reset capabilities shown in figure 4.;’.) The READ lines are
to be interpretted similarly. Usually registers are
indicated merely by the juxtaposition of boxes as shown in
figure 4.14 with the bit numbers assumed to range as
indicated across the top. Particular bit values are
indicated in the boxes.

e

MM T L
L AURERAFG TR PR V¢L/.L='5g='3.o'

standard 4-Bit Register Symbol Containing Value (13)

Figure 4.14:

MEMORY ARRAYS

The organization of many registers or words of memory
to form a block with many "locations" for storing numbers or

other data is shown in figure 4.15. In this diagram, the

ALO
34 -1 o (Ty ¢
rbo3 bozr— ™ }r;qboo!_—}
m:r:,‘[-th _‘“.“
TS T
13 1244 b 11l { | 4 1040 !
R T
= - QT ' " l 1 ' = : !
i) [Eh] D] =i
- PN 51 RELSE 'y-q‘bzl‘r Hbmm
AL3 me (i {
‘: ;f Fals | Y ‘
B e 2 ﬁ"*bng b3oi:ﬁ-’
W Rl 1w Rl 1w !R wr iR

Figure 4.15: Memory Organization With Four Locations

-79-

address select lines (AL.) are used to isolate the
particular location whose contents are desired. The
interface to reading and writing the contents of specific
memory locations is exactly as described for the register

shown in figure 4.13.

ADDRESS DECODING

A computer would not be a very flexible device if each
location of memory had to be accessed (read or written)
specifically such that only the contents of specific
locations could be added, etc.. To avoid this, an "address
register" is used which contains the address of the location
that is desired. This of course means that the contents of
the address register must be decoded to set the appropriate
address select line. In figure 4.16 the decoder for a 2-bit

address is shown; this is sufficient to decode the four

adress select lines (ALi) shown in figure 4.15. Memories

contain many (or many thousands of) locations so that
address decoding certainly must involve more that two-bit
decoders. But, just as in the case of arithmetic adders,
address decoders are constructed hierarchically fram basic
two-bit decoders. In figure 4.16 we show a Four-bit decoder
constructed fram five two-bit decoders. This decoder is
able to address sixteen locations (or alternatively sixteen
lower level decoders). An eight-bit decoder can ke built
from 17 four-bit decoders which can address 256 locations.
-80-

Address Lines

! 11 (AL3)

1

{
i
!
!
!
!
!

Ej
()

b.—.—l-n-'—.—w--.—.—o—o—.

i

UAUARR

.?4——-—- ? T -

B S e b G S b e b G b S b b b b b g

-

Figure 4.15: A Two-Bit Address Decoder (2BALC)

COMPUTER MEMORY ORGANIZATION

We can now understand the organization and access
capabilities of computer memory that was shown in figure
2.7. The structure that provides this capability is shown
in figure 4.17. The Memory Address Register (MAR) and
Memory Register (MR) provide the complete interface to the
CPU and I/0 Controllers. The details of the actual decoding
and access' operations are handled independent of those

devices.

Select

Sixteen
] 4BACC Address
! Lines
2 § % -)
t ! e—i ——— 1111
S ! | 2BADC $=—t—— 1110
! i B bt 1101
: ‘ Y1 et 1100
A !
ot 12 \
L ! ‘ i - '
: | B e 1011
: B 2BAIC b 1010
! yeeee— §) b 1001
b3 P i—l ’ .——J. feeene. 1000
L} 2BaRC { !
¥ 2 '
b : ,mhx 4 ! _b" ‘ !
’ ' Lj O] et (11}
3 ' 2BAIC bt 0110
| fobee 0101
L1 ! » e 0100
X f :
L : !
bl % . e 011
L 2BANC b (10
s S e 0001
2 > e —+—— 0000
L} i !

Figure 4.16: Four-Bit Address Decoder For 16 Locations

MAR Memory Registar (MR)

3 y Rl

T

3

DIGITAL LOGIC DESIGN

As we have shown, digital logic designers really just
inteqrate previously designed components at each level
dealing with a complexity factor of about ten components
which we are all comfortable with. So modern computer
designers do not deal with the number of components which
are counted when a device's complexity is assessed, like
500,000 transistors, 300,000 logic gates, etc.. Of course
this luxury was not available until the mid to late 1960's
when Integrated Circuits (IC's) were developed, but the
concept was inherent in switching circuits all along. The
mere pfacticalities that had to be overcame were primarily
size and reliability. Size because of the difficulties in
manipulating gigantic assemblies and reliability because of
the required replaceability of failed ccmponents. Now we
have gone full circle, scrapping an entire computer if a
single bit fails! So you can see that cost of the component
is also involved, and to a lesser extent power requirements.
Solutions to all of these practical issues are the major
breakthroughs that have made the current situation in

camputing.

DIGITAL DESIGN CONSIDERATIONS

The purpose and use of switching circuits is kasically

very different than the electric circuits used in analog

=83-

computers. In switching circuits, as we have seen, woltages
have typically only two possible values: "high" and "low",
"on" and "off", "1" and "0", or "true" and "false" depending
on how they are interpretted. Of course during rapid
transitions between states, there are continuous variations
in voltages as in an analog circuit, but if values are not
sampled immediately after transitions, this particular
difficulty goes away. See figure 4.18 for a more precise
illustration than that which we showed in figure 4.5 of what
actually transpires in a circuit when a switch opens or

closes. How long the delay must be to avoid these

Transients

“High n
Settling | State
times Range

v
o]
1
=
a
g
e
s

= === <= "Lo#" state range
Y i t t t

time —-=>

Figure 4.18: Wide Tolerances in Digital Signals

"transients" is a function of the technology employed.
Electromagnets were slow; transistors employed in today's
integrated circuits are fast, requiring as little as a few
"nanoseconds" (billionths of a second) to attain equilibrium
values.,

An “"oscillator" which generates an alternating "high"
and "low" signal at a precise rate was develoved and used as

-84~

a clock to "trigger" the simultanecus operation of all the

switching circuits in a system so that this sampling

function could be synchronized.

PRECISION WITHOUT COMPONENT CONSTRAINIS

The equilibrium voltages, even though conceptually two
discrete possibilities ("1" and "0" throughout our earlier
discussion of figure 4.5 and more recently 4.18), micht also
vary by fairly large amounts without making it difficult to
distinguish between states as shown also in this figure. A
voltage value between 0.83 and 1.37 might be sellected as
representing ocne and values between -0.31 and 0.42 to
represent zero for example, providing a tolerance that could
be achieved by very inexpensive components. Thus the
precise engineering discipline of digital electronic desicn
was born which reguired very little in the way of pracision
fram the components (other than the frequency of the clcck).
This is because voltages are sampled pericdically rather
than continuously and because wide tolerances ars allowed on
sampled voltage values.

The advantage of these digital rather than analog
circuits like those employed by analog computers is much
like the advantage of using an abacus over the use of
lengths of rooe to perform summations of large numbers:
when lengths of rope, the components in a slide rule, ar the

current in an analog circuit are used, the precision of the

-85~

resulting arithmetic is limited by the precision of
camponents. However, there is nc relationship between the
precision with which the beads or pebbles in an abacus are
made and the precision of the arithmetic performed on the
abacus. The same is true in digital computers.

In the next chapters we will witness the proliferation

of these digital electronic devices.

