
Transaction Theory of Radiation 

In this presentation of Maxwell’s equations and their solutions, which pertain to electromagnetic radiation, we 
address issues that are of particular interest when considering relativistic electrons encountered in a hot plasma such 
as the intergalactic medium. The discussion accommodates theoretical considerations of absorption theory which 
would have to be extended somewhat to address relativistic interactions involving paired secondary emission and 
absorption of electromagnetic radiation in scattering phenomena. This natural pairing of specific emission and 
absorption events relates closely to work by Lewis (1926), Wheeler and Feynman (1945), Cramer (1980 and 1986), 
and others who have shown that propagation of light may require an explicit pre-association of such emission and 
absorption events between material agents. Whereas observational aspects associated with this description are 
identical to those of more usual presentations of electromagnetic theory in the cases involving relatively stationary 
emitters and absorbers, observational aspects of relativistic aberration and Doppler effects associated with relatively 
moving intermediary ‘observers’ are characterized quite naturally in this approach as well.  

Terminology  
This appendix will shy away from much in the way of difficult mathematical prerequisites. However, equations will 
be presented wherever appropriate because there is much that can be inferred from an understanding of the 
symmetries of the equations and descriptions of the implied operations even by someone for whom the equations 
themselves may seem obtuse. Descriptions will be explicit – graphic where possible – but attempts have been made 
to avoid the more difficult aspects of the associated mathematics. Some minimal understanding of vector products 
and divergence and curl differential operations on a vector is essential to an understanding of the vector approach to 
electromagnetic field theory, of course. These definitions in Cartesian coordinates are as follows:  

  

In the above definitions, U and V are vector fields; a, Ui's, and Vi's are scalars. The 
scalar Ux is the component of the vector U along the x axis. The right-hand rule (see 
figure A.1) states that if you use the fingers on your right hand to indicate the direction 
of rotation of U into V, then the extended thumb will be in the direction of the vector 
cross product. In these definitions, U is a vector function of x, y, z, t. The basis vectors 
i, j, k are unit vectors in the directions of the x, y, z axes, respectively. The vector       
∂a(s)/∂s is the partial derivative (the "slope" or rate of change) of the function a(s) 

with respect to the independent variable s. Scalars∂Ui /∂s are the partial derivatives 
of scalar components of the vector U with respect to the independent variable s. The 
electric field E is, for example, the gradient of a scalar potential field. Note: 
Determining the divergence and curl of a vector is sufficient to determine the vector 
itself to within a vector constant throughout the region for which the relations apply.  



Electromagnetic theory  
In the interaction theory of radiation being discussed here, all of the overwhelming evidence of experimental 
confirmation of the theoretical origins of electromagnetic theory remain unchallenged and have intentionally not 
been altered. Maxwell's differential equations consolidate these results and are, therefore, accepted without change. 
They are: 

 
In these equations in rationalized mks units experimentally known vector functions D, H, E, B, and J are related one 
to another.* [See note at end of article.] The scalar function �	is the charge density throughout the region for which 
the equations pertain. The vector quantity J is a characterization of the amount and direction of conduction current 
throughout the region. Boundary conditions of the region to which the equations are to pertain may further constrain 
the relationships among the various vector field quantities. The relationships define a nearly symmetric cycle; if r	
and J vanish throughout the region, all the equations become homogeneous differential equations of identical form 
and the symmetry is obviously complete. Since we will be dealing with the propagation of light in a vacuum 
between encounters, this symmetry will be assumed throughout the remainder of this article. Of the four remaining 
vector field quantities, two involve fields associated with electrical effects and two involve fields associated with 
magnetic effects. Two constitutive relation equations define and relate dual microscopic and macroscopic electric 
and magnetic fields as follows:  

 
where e	is the permittivity and µ	the permeability of the medium. Both these quantities are typically scalars, but in 
certain media there are anisotropic distortion effects that can be characterized by a tensor representation of these 
quantities. These two equations reflect the fact that only one of the quantities (called the microscopic field – on the 
right) in each field category will be associated directly with emission; it is independent of the structural 
characteristics of interacting media throughout the region of consideration. The other two are induced in part by the 
microscopic fields and are called the macroscopic fields; these terms have more to do with externality of origination 
than with the size in electromagnetic theory. In a vacuum, the scalar constitutive coefficients are typically identified 
as eo and µo, whose values depend upon the system of units chosen. The speed of propagation of a wave function that 
satisfies Maxwell's equations will be seen to be determined by these quantities and in particular for propagation in a 
vacuum, that instantaneous speed will be: 



 
In addition to Maxwell's equations, one must acknowledge the role of the Lorentz force on isolated charges as of 
extreme relevance to electrodynamics where there is relative motion of the charge in microscopic electromagnetic 
fields. It is given by:  

 
where q is the scalar quantity of a specific charge that is in motion and v is the vector velocity of the charge relative 
to a test charge of unit magnitude experiencing the force. Thus the instantaneous electromotive force on a unit 
charge depends on magnetic as well as the usual electric forces in that case.  

Deriving and solving radiation wave equations  
Derivation of the wave equations from Maxwell's equations is problematical in several regards. Although there are 
two microscopic (2 and 3) and two macroscopic (1 and 4) equations, substitutions using constitutive relations (5 and 
6) must be used to obtain the wave equations. The implications of the original four field equations, which seem 
clear, can easily be lost in the process of solution. For example, by these substitutions, solutions can be obtained for 
the microscopic fields E and B with the resulting equations looking as though they should be interpreted as the 
fluctuating electric and magnetic fields of an emitter independent of the medium or the ultimate absorber of the 
radiation. Here only the speed of propagation appears to be affected by the medium:  

 

The definition of ∇2 U can be elaborated from the definitions above for the dot product of a gradient operator:       
∇2 U º	∇•∇U. The wave equations themselves derive from the vector identity ∇X (∇X U) º	∇(∇•U) -∇2U  
and by substitutions from constitutive relations into Maxwell's equations. The wave equations 9) and 10) each derive 
directly from Maxwell's equations 3) and 4) in addition to either 1) or 2) with constitutive relation substitutions 
occurring twice in the process. So these are hardly isolated conditions applicable solely to an emitter.  
These equations describe propagational wave phenomena. In general solutions will be complex quantities, only the 
real parts of which are of any interest experimentally. Solutions shown in figure A2 are of the form:  

 

Eo and Bo are constant vectors for plane polarized waves. Substitution back into Maxwell's divergence equations 
results in further constraints on E and B such that both must be perpendicular to the direction of propagation given 
by the wave vector k, whose magnitude is given by k = (µ e)1⁄2w, where w	is the angular frequency of the radiation. 
This constraint is the basis of the notable transverse wave nature of light. Substituting into Maxwell's curl equations 
places additional constraints on E and B such that they must always be in phase and of equal in magnitude in 
addition to being at right angles to each other. By superposition of linearly independent solutions with uniquely 
paired Eo and Bo values, one obtains the more general elliptical polarization solutions – plane and circular 
polarization being the special cases shown in figure A2.  

Are there preferred solutions to Maxwell's equations?  
It is apparent that Maxwell's equations may be used to determine valid solutions for all four of the fields. But which 
wave equations (if any) inherently couple as a single transverse wave? In other words, do E and B, E and H, D and 
H, or D and B constitute the most meaningful description of the radiation we associate with these equations? With 
such a plethora of possibilities, which (if any) of these solutions should be preferred?  



In consideration of these questions, we note that radiation energy density and energy flow (as electromagnetic 
momentum) equations both involve equally coupled microscopic and macroscopic fields for each as follows:  

 

More than any other single equation, the latter Poynting vector equation symbolizes the transverse nature of 
electromagnetic radiation (refer to the right-hand rule above for an intuitive feel for this quantity) that distinguishes 
it from longitudinal vibrations characteristic of sound propagation. Furthermore, this equation clearly indicates equal 
participation by macroscopic fields associated within the medium and/or absorption. With only an emitting and an 
absorbing atom under consideration, E would clearly be associated with the emitter, H with the absorber. Thus, 
energy and momentum considerations would seem to suggest that E and H occupy preeminent positions, as the 
fields most naturally characterizing radiative energy transfer.  

 

Proponents of absorption theory have advocated an equal role for absorption to the one usually associated 
exclusively with emission. They have pointed out that, in addition to field alternatives, there are two sets of valid 
solutions to whichever set of wave equations are selected. One of these alternatives – identified as the retarded 
potential solution (associated with propagation from the emitter toward the absorber) – has been the traditionally 
selected solution to Maxwell's equations. The other allowed solution identified as the advanced potential solution 
(associated with propagation from the absorber toward the emitter) was subsequently proposed as being equally 
legitimate by Wheeler and Feynman (1945). Naturally the retarded solution was exclusively in vogue until 
absorption theory was seriously considered, the advanced solution having always seemed to correspond to the non-
physical situations of a signal arriving at the moment that emission occurs as though by divine intervention. More 
recently Cramer has proposed a similar reinstatement to vitalize a “transaction interpretation” of quantum 
mechanics. He demonstrates the role of the two waves as illustrated in figure A3 taken from his presentations (1986, 
p. 659).  



 

Here there is an arithmetic assignment of plus and minus signs to be associated with advanced and retarded waves, 
but nothing that could be considered a physical assignment specific to the roles of emission and absorption so 
clearly integral to this whole process. None of these early investigators addressed the more obviously physical 
allocation of fields specific to material entities associated with the emission and absorption of the radiation. The 
assignments fit naturally into this scheme.  

But the conclusion that redundant sets of solutions are involved equally in the transaction is a conclusion that 
absorption theorists have long maintained, advocating acceptance of both the plus and minus signs in the 
exponential expression of the wave solutions provided in the equations 11) and 12). This author is convinced that the 
respective microscopic and macroscopic physical fields should also be acknowledged as being uniquely associated 
with these four solutions as well rather than merely including solutions with an arbitrary alternation of arithmetic 
sign in an attempt to restore physically meaningful interpretations to the two solutions. There is obviously much 
more to it than that.  

This reluctance to make distinctions between the frame of reference of the fields is no doubt an outgrowth of the 
frame independence that has resulted from Einstein’s law of the transmission of light for which it should make no 
difference in which frame the source of the emission and the absorber of the radiation happen to reside. Thus, the 
early investigators did not allocate macroscopic fields associated specifically with absorption or the microscopic 
ones with emission as seems only reasonable to this author. Nor did they attempt to exploit complimentary 
symmetries among the fields, which would seem so natural to that endeavor. If we had solved Maxwell's equations 
for H and D instead of E and B, for example, we might in effect have solved for what could be called an absorber 
wave equation as against an emitter wave equation. For reasons cited above and others beyond the scope of the 
current effort, the author believes neither of these to be precisely valid designations, however. There is in either case 
an interaction between the microscopic and macroscopic fields to be taken into account. Perhaps we are at least 
discovering why four, seemingly redundant, rather than just two such field vectors have been required to fully 
determine electromagnetic transactions even in a vacuum.  



Of course, when dealing with a relatively stationary emitter and absorber there would be no measurable difference, 
but in dynamic situations epistemological differences abound. These differences derive from directional distortions 
associated with relativistic aberration. But again, further discussion of this topic is beyond the bounds of the current 
Appendix and may be found in Bonn (2008).  

 

NOTE: 

*The quantum theory of light does not substantially alter the results of Maxwell's approach that was historically significant to the 
development of relativity and so we will go with that more intuitive approach. This is in accordance with decisions by Wheeler 
and Feynman, as well as Cramer cited above in their similarly motivated analyses. The fashionable geometrical approach using 
generic differentiation of an electromagnetic field strength tensor to represent these equations, while economical in terminology, 
de-emphasizes the complimentary nature of emission and absorption processes envisioned here, since typically the tensor has 
been deployed with exclusively microscopic fields.  

 

 


